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Abstract: A quantitative phase measuring technique is presented that 
estimates the object phase from a series of phase shifted interferograms that 
are obtained in a common-path configuration with unknown phase shifts. 
The derived random phase shifting algorithm for common-path 
interferometers is based on the Generalized Phase Contrast theory [Appl. 
Opt. 40(2), 268 (2001)], which accounts for the particular image formation 
and includes effects that are not present in two-beam interferometry. It is 
shown experimentally that this technique can be used within common-path 
configurations employing nonlinear liquid crystal materials as self-induced 
phase filters for quantitative phase imaging without the need of phase shift 
calibrations. The advantages of such liquid crystal elements compared to 
spatial light modulator based solutions are given by the cost-effectiveness, 
self-alignment, and the generation of diminutive dimensions of the phase 
filter size, giving unique performance advantages. 
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1. Introduction 

The visualization of phase objects [1,2] had a tremendous impact in science and technology, 
because it allowed revealing hidden features of the objects under investigation. The 
popularity and usefulness of these techniques were accompanied by phase measuring 
techniques [3] in form of shearing [4], interferometry [5], or holography [6] techniques, or by 
techniques that obtain the phase estimate from defocus [7–11]. Recent advances in shearing 
techniques [12] give a robust measurement configuration with high accuracy that allows a 
direct phase reconstruction. The drawback of these techniques lies in the system complexity 
that demands a specific form of illumination as well as an additional computational effort 
during the phase reconstruction procedure. Conventional inline-holographic techniques [13] 
offer a phase measuring capability in simple measurement setups. However, the phase 
reconstruction is limited by the presence of the twin-image and further computations are 
needed within twin-removal techniques [14]. Interferometry and holography based 
measurement systems employing temporal phase shifting techniques [15] do not require such 
effort and give an instant result. However, these devices are sensitive to environmental 
vibrations. Single shot spatial carrier techniques allow the reconstruction from a single frame, 
but require a fringe pattern analysis and give usually a lower resolution and accuracy [3]. 
Common path (CP) configurations [16] as point diffraction interferometers (PDI) do not have 
such drawbacks. Quantitative phase measurements have been reported in a CP system using 
spatial light modulators (SLMs) in order to induce controllable phase shifts to the zero-
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frequency of the intensity distribution at Fourier plane [17]. An SLM may modulate the zero-
frequency using a single or a few pixels, however, the dimensions of the pixels only allow 
obtaining an optimal CP configuration for specific optical systems. The use of optical 
nonlinear materials as phase shifting devices in common path configurations has been 
reported by numerous authors [18,19]. These systems are self-aligned and have a tunable self-
induced phase shift at the Fourier plane, due to the nonlinear optical behavior of the material. 
However, the complexity of those systems lies in the phase shift calibration due to the 
material nonlinearity. A similar problem is also encountered in interferometry due to the use 
of non-ideal phase shifters as well as a background drifts. The use of iterative random phase 
shifting algorithms (RPSA) [20] that extract the phase from a series of interferograms with 
unknown phase steps overcome this obstacle. Other random phase retrieval techniques 
achieve a higher accuracy, but require carrier fringes for the reconstruction [21]. 
Nevertheless, available RPSA have been originally developed for two-beam interferometers 
only and are not applicable to CP configurations, because the interferograms underlie a 
different image formation mechanism and have no carrier fringes. 

In this work, a RPSA is reported that enables the accurate phase reconstructions in CP 
devices using a series of interferograms having unknown phase shifts. This RPSA is derived 
from a complete framework that describes the image formation in CP configurations using a 
so-called Generalized Phase Contrast (GPC) theory [22]. The GPC theory includes a non-
uniform background modulation and varying visibility due to the influence of various 
parameters including size of the phase filter at the Fourier plane, as well as fill factor [23]. 
Hence, the GPC [22] based RPSA presented here uses an image formation model that gives 
an accurate description between the phase of the object φ(x,y), phase step θn of the phase filter 
and intensity In(x,y). This technique is referred to as common path random phase shifting 
algorithm (CP-RPSA). The paper is organized as follows: Section 2 derives the theory of 
temporal phase shifting techniques in common-path interferometry for both, the case of 
known (Section 2.1) and unknown (Section 2.2) phase shifted interferograms. The validity of 
these techniques is verified experimentally in Section 3, where further discussion follow in 
Section 4. The conclusions are presented in Section 5. 

2. Quantitative phase imaging in common-path systems 

2.1 Temporal phase shifting techniques 

Consider a CP configuration with a step-like filter placed at the Fourier plane as shown in 
Fig. 1. The intensity distribution In = In(x,y), at the output plane with spatial coordinates x and 
y, has an interdependence with the phase object φ = φ(x,y), and the phase shift θn as [16], 

 
22 1

0 0 1( ) exp( ) [ exp( ) 1] ,n nI A i C iβ ϕ β β θ−≅ + −  (1) 

where A is the amplitude of the optical field, β0 is the transmittance for spatial frequency 
components exceeding the radius of the circular filter R1 (Fig. 1), and β1 and θn is the 
transmittance and the phase shift of the filter at the Fourier plane, respectively. The parameter 
C is a constant that can be expressed as a product of two components: C = K·|α|, where the 
factor K is a constant defined by experimental conditions for the system in Fig. 1 that can be 
calculated [16,22] as K = 1 - J0(1.22πη), where J0 is the Bessel function of the first kind and 
the parameter η = R1 / R2, where R2 is the radius of the main lobe of the Airy function at the 
Fourier plane [16]. A commonly present, but often neglected aspect in CP systems are the fill-
factor requirements [23] that affect the constant |α| with |α|<1. The parameter|α| describes the 
effect of the object wave that is modulated by the phase filter; however, if the object 
dimensions are small compared to the illumination, i.e. the fill-factor requirements are 
fulfilled |α|~1. An appropriate choice of K allows optimizing the measurement conditions 
giving highest visibility and performance [24]. A detailed analysis on K and η as well as 
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further expressions for K and α are derived in [16] and show that both K and η remain 
constant for a given measurement configuration. 

 

Fig. 1. Schematic of a CP-configuration having a circular phase filter at the Fourier plane. 

Given these considerations, it is possible to re-express Eq. (1) after some algebraic 
manipulations, using the parameters q1 = 1 + C 2 + β 2C 2, q2 = −2β C 2, q3 = 2βC, and β = β1 
/β0, as 

 2
, 0 1 2 3 3( ) [ cos cos (cos cos sin sin )],m n m n n m n mI A q q q qβ ϕ θ θ ϕ θ ϕ≅ + − + +  (2) 

where m is an integer denoting pixel numeration at the camera so that each m corresponds to a 
given position m→(x,y), with m = 0, 1, …, (M-1), and M is the total number of pixels at each 
frame. Notably, β = 1 for phase filters with pure phase modulation. Given these 
considerations, it is possible to estimate the unknown object phase from a series of N intensity 
measurements taken at various phase shifts θn. For the case of arbitrary (but known) phase 
steps, the phase can be estimated by solving following linear system with 

 ,m CPmI Q q p=
 

 (3) 

with 

 

0 0

1 1

( 1) ( 1)
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1 cos sin
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θ θ
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 
 
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 
 
  

  
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2 2 2 2 2 2
0 0 0[ cos sin ]T

CPm m mp A A Aβ β ϕ β ϕ=
, ,0 ,1 ,( 1)[ ]T

m m m m NI I I I −=


 , and tan(φm) = 

pCPm(3) /pCPm(2), where pCPm(3) and pCPm(2) are the third and second element of the vector pCPm. 
For comparison, for the case of an ordinary two-beam interferometer the relation between the 
interferometer phase and the intensity is given as 

 2 2 2[ cos sin ] ,T
m m mI Q A A Aγ ϕ γ ϕ=


 (6) 

where γ is the fringe visibility. Usually, the accuracy in the phase estimate when using Eq. (3) 
is limited by the presence of intensity noise and phase shift errors. 
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If a dye doped LC material is used as a phase filter, there are time-variant phase shift 
errors due to the presence of intensity noise, polarization stability, temperature changes, and 
molecular misalignments. Hence, modelling of the phase shift error using time-invariant 
models as it is the commonly adopted in interferometry [25] would not be appropriate, when 
e.g. characterizing the nonlinear response of piezo electric transducer based phase shifting 
units with a linear and quadratic term. 

2.2 Phase reconstructions from random phase shifted interferograms 

In the following a GPC based random phase shifting algorithm is derived that accounts for 
these errors. Consider an alternative calculation of the vector pCPm in Eq. (3) using a least-
square criterion [20] as 

 
1

2
(1) (2) (3) ,

0

( cos sin ) ,
N

f n n m n
n

S f f f Iθ θ
−

=

= + + −  (7) 

with ,CPmf q p=
 

where for the correct phase step θn one obtains 

(1) (2) (3)/ 0, / 0, / 0,f f fS f S f S f∂ ∂ = ∂ ∂ = ∂ ∂ = and 
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 (9) 

Similar to the case of Eq. (3), the phase φm at every pixel can be calculated as tan(φm) = 
pCPm(3) /pCPm(2) using 

 
1 1 1

1
, , ,

0 0 0

[ ] [ cos sin ] .
N N N

T
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Once the phase φm is estimated, it is possible to use this information in order to get a better 
estimate for the individual phase steps θn. The intensity Im,n can be expressed using the nth row 
of the matrix Q (denoted as Qn) as 

 , .m n n CPmI Q q p= 
 (11) 

Being a scalar, Im,n can be written, using Im,n =  Im,n
T, as 

 ,

(1) (2) (3)cos sin ,

T T T
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g g gϕ ϕ
=
= + +


 (12) 

where Tg q h=

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0 0 0[ cos sin ]T

n nh A A Aβ β θ β θ=


. Similar to the case of Eq. (7), 

when defining a least square criterion of the RPSA in [20], as 

 2
(1) (2) (3) ,

0

( cos sin )
M
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and using (1) (2) (3)/ 0, / 0, / 0,g g gS g S g S g∂ ∂ = ∂ ∂ = ∂ ∂ = one obtains 
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where M is the total number of pixels, and 
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The phase step at each phase shift angle θn is then calculated as tan(θn) = h(3) /h(2) using 

 
1 1 1

1
, , ,

0 0 0

[ ] [ cos sin ] .
M M M

T T
m n m n m m n m

m m m

h Bq I I Iϕ ϕ
− − −

−

= = =

=   


 (16) 

Similar to the case of interferometry [20], it is possible to apply an iterative procedure to 
estimate both φm and θn. This eight steps procedure is referred to as a common path random 
phase shifting algorithm (CP-RPSA) and is carried out as follows: 

1) The phase steps θn are initialized using a randomly chosen value or a rough pre-
estimate that may be obtained from measurements of known objects using the same 
measurement device. 

2) The matrix A of Eq. (9) is computed using all (θn) 's. 

3) The vector pCPm is calculated using Eq. (10) for each pixel m. 

4) The φm is calculated at each pixel using tan(φm) = pCPm(3) /pCPm(2). 

5) The matrix B of Eq. (15) is computed using all (φm) 's. 

6) The vector h is calculated using Eq. (16) for each intensity frame captured at the phase 
step θn. 

7) The phase step θn is calculated for each frame using tan(θn) = h(3) /h(2) . 

8) The steps 2 to 7 are repeated until the values of θn converge, i.e. the maximum 
difference in all θn between two subsequent iterations falls below a certain threshold 
e.g. | θn - θn + 1 | < 10−10. 

It should be noted that this train of thought is equal to the RPSA of [20] for the case of a 
two-beam interferometer, i.e. Equation (6) instead of Eq. (3) is adopted for the derivation; this 
assumption however cannot be made in common-path configurations. 

2.3 Simulations 

The CP-RPSA approach presented here as well as the necessity of the GPC model have been 
verified by simulation. An example of the discrepancy in the reconstructed phase when 
assuming a two-beam interferometry model (i.e. solution to Eq. (6)) and a GPC based image 
formation (i.e. solution to Eq. (3)) is shown in Fig. 2. The simulations in Fig. 2 have been 
carried out for a pure phase object in form of a Lena phantom with a maximum phase 
difference of 1.7π that is measured in a CP configuration with C = 0.9, N = 4, and θn = (n-1) 
π/2, i.e. the image formation follows Eq. (1). The first problem that is encountered when 
assuming a two-beam interferometer based image formation, is that the conventional RPSA 
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of reference [20] does not converge, even under ideal conditions i.e. in absence of noise and 
no phase shift miscalibrations. Certainly, for the latter case with the particular interferometry 
based image formation model it is possible to obtain a solution by solving Eq. (6) directly by 
assuming that the phase steps are known. The results are shown in Fig. 2a. 

 

Fig. 2. Phase reconstructions in a common path configuration described by Eq. (1) for a Lena 
phantom with a maximum phase difference of 1.7π for the case of N = 4, and θn = (n-1) π/2, 
with n = 0, 1, 2, 3 when using (a) interferometry based reconstruction (direct solution to Eq. 
(6)) and (c) the CP-RPSA presented here. The corresponding error for (a) and (c) is shown in 
(b) and (d), respectively. The case of (c,d) is shown in (e,f) but having AWGN with σΙ = 0.05. 
All units are in radians. 

The error for the noise free case indicates (see Fig. 2b) the presence of systematic errors 
that can be traced back to the assumption of two-beam interferometry (validity of Eq. (6)). On 
the contrary, when using the CP-RPSA procedure presented here, an exact reconstruction is 
achieved at the accuracy limit of double precision computations. The recovered phase and 
phase error is shown in Fig. 2c and 2d, respectively. The robustness of this method is verified 
for the case of additive white Gaussian noise (AWGN) with a (to one) standard deviation in 
the measured intensity σΙ of σΙ = 0.05 as shown in Figs. 2e and 2f. The results indicate that a 
robust phase reconstruction can be achieved when using this GPC based methodology. 

A further analysis on the noise dependency of the CP-RPSA algorithm is shown in Table 
1 for N = 4 (cases 1 to 4) and N = 5 (cases 5 to 8) in presence of various levels of noise. 
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Table 1 represents a typical experimental situation where one seeks to obtain a series of phase 
shifted interferograms with a phase step of 2π/N, but due uncertainties the actual phase shift 
has an error. In the simulations for Table 1, the real phase shifts for N = 4 equals θ1 = −0.267, 
θ2 = 1.628, θ3 = 2.819, and θ4 = −1.164, and for the case of N = 5 there are θ1 = −0.534, θ2 = 
1.372, θ3 = 1.868, θ4 = −1.700, and θ5 = 0.856. The results in Table 1 indicate, that in 
presence of no noise, the CP-RPSA recovers the real phase shift very well giving a negligible 
error in the reconstructed phase. In presence of noise however, there is a mismatch between 
the real and the recovered phase step, which results in non-ideal phase reconstructions. The 
root mean square error (RMSE) for the phase of these cases is shown in Table 1, which 
indicate an acceptable level of accuracy. For comparison, when solving Eq. (3) directly 
(assuming a constant phase step of 2π/N) the RMSE in the recovered phase is equal to 0.0351 
(case 1), 0.0355 (case 2), 0.0367 (case 3), 0.0387 (case 4), 0.0812 (case 5), 0.0815 (case 6), 
0.0820 (case 7), and 0.0832 (case 8) radians. The results indicate that a significantly higher 
accuracy is achievable when using the CP-RPSA algorithm instead of solving Eq. (3) directly. 

Table 1. Comparison of the real and recovered phase shift as well as RMSE of the 
recovered phase when using CP-RPSA algorithm with N = 4 (cases 1-4) and N = 5 (cases 

5-8) for various levels of noise (σΙ). All units are in radians. 

Simulation 
cases 

Real phase step  Estimated phase step CP-RPSA RMSE 
θ1 θ2 θ3 θ4 θ5  θ1 θ2 θ3 θ4 θ5 phase 

1 σΙ =0 -0.267 1.628 2.819 -1.164 -  -0.267 1.628 2.819 -1.164 - 2e-12 
2 σΙ =0.01 -0.267 1.628 2.819 -1.164 -  -0.258 1.610 2.819 -1.155 - 0.0055 
3 σΙ =0.02 -0.267 1.628 2.819 -1.164 -  -0.237 1.575 2.824 -1.117 - 0.0116 
4 σΙ =0.03 -0.267 1.628 2.819 -1.164 -  -0.206 1.520 2.844 -1.043 - 0.0198 
5 σΙ =0 -0.534 1.372 1.868 -1.700 -0.856  -0.534 1.372 1.868 -1.700 -0.856 1e-12 
6 σΙ =0.01 -0.534 1.372 1.868 -1.700 -0.856  -0.530 1.369 1.863 -1.697 -0.854 0.0041 
7 σΙ =0.02 -0.534 1.372 1.868 -1.700 -0.856  -0.513 1.331 1.827 -1.693 -0.829 0.0091 
8 σΙ =0.03 -0.534 1.372 1.868 -1.700 -0.856  -0.495 1.289 1.796 -1.681 -0.817 0.0142 

The simulations results of Table 1 indicate that the CP-RPSA procedure has the potential 
to estimate the unknown phase shifts iteratively, or alternatively, in case of a fairly well 
known phase shift it is possible to correct for errors in the phase shift. This property is 
investigated for a number of cases by simulation using 100 randomly generated phase shift 
errors. As a measure of the discrepancy between the real phase steps θn,real and the ideal phase 
steps θn,ideal the so called phase shift error (PSE) is defined as, 

 2
, ,

1

( ) .
N

n real n ideal
n

PSE θ θ
=

= −  (17) 

The simulations in Fig. 3 have been carried out under the same conditions as in Fig. 2, but 
having various amounts of PSEs. In these simulations the CP-RPSA iterations are terminated 
if the RMS between two subsequent phase shifts is < 10−10, or if a total number of 10000 
iterations is exceeded. Figure 3a shows the PSE of the estimated phase shift of the CP-RPSA 
for a given initial PSE of the measurement system. The results indicate that PSEs can be 
significantly reduced when using the CP-RPSA algorithm. 

The corresponding RMSE of the object phase is shown in Fig. 3b (blue): similar to the 
case of Fig. 3a, for most cases a significantly reduced error in the reconstructed object phase 
is obtained, giving higher accuracy. For comparison, the RMSE in Fig. 3b is shown as well 
for the case when solving Eq. (3) directly (red). It should be noted however, that in some 
cases the CP-RPSA did not converge and the phase shift error could not be corrected. Those 
cases occur if the CP-RPSA is trapped in a local minimum and typically show an oscillatory 
behaviour in the difference between two subsequent estimates of the phase shift. This 
difference may be small, but becomes larger with increasing number of iterations, before it 
gets smaller again, and continuously cycles in this manner. Nevertheless, such cases can be 
detected, as the difference between two subsequent phase shifts is typically larger than the 
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threshold, i.e. |θn - θn + 1 | > 0.1 radians, even after a very large number of iterations (e.g. 
10000). In those cases it is advisable to restart the CP-RPSA with different initial conditions 
(e.g. using randomly chosen phase shifts) or to repeat the measurement; commonly these 
measures are sufficient. 

 

Fig. 3. Phase reconstructions for the case of Fig. 2, but having various phase shift errors. 
Figure 3a shows the PSE that is obtained by the CP-RPSA for a given PSE of the measurement 
system. Figure 3b shows the RMSE of the reconstructed phase when using the CP-RPSA 
algorithm (blue) or when solving Eq. (3) directly (red). All units are in radians. Each dot 
corresponds to one out of 100 simulations. 

3. Experiments 

The setup of the CP system used for the measurements in this work is depicted in Fig. 4. The 
dye doped LC cell (reported in [18]) is placed at the Fourier plane. The half-wave plate 
allows altering the polarization and thereby controls the phase shift of the active filter [18]. In 
this way, a series of interferograms can be recorded having various phase shifts. 

 

Fig. 4. Schematic of the nonlinear phase contrast microscope with a polarization controlled 
phase shift. 

The measurement in Fig. 5 shows three different rectangular shaped step-like phase 
objects with a maximum step of ~600nm (a,d), ~320nm (b,e), and ~150nm (c,f) that is 
illuminated with λ = 633nm. The measurements in Fig. 5 have been conducted in the setup of 
Fig. 4 with K ~0.761 and η ~0.515 using a series of 19 intensities obtained with various phase 
shifts. Similar to the case of Fig. 2, the use of the conventional RPSA [20] was not successful, 
because no convergence could be observed for any of the recorded data sets. Solutions to Eq. 
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(6) (two-beam Interferometry) can therefore only be carried out when assuming the case of no 
phase shift errors in the assumed phase shift. The phases in (a,b,c) correspond to this 
particular case and have been reconstructed by solving Eq. (6) directly for a set of phase shifts 
(assumed to be known). Nevertheless, despite the common believe even for very well 
calibrated systems with known phase steps, the assumption of a two-beam interferometer is 
wrong: the reconstructed objects in (a,b,c) have for all three cases a much larger phase 
difference than the expected known phase distribution of the manufactured object. On the 
contrary, when using the CP-RPSA procedure of Section 2.2 that is based on the GPC model 
[16,22], the recovered phases are in good agreements with the expected object phase 
distributions, as it is shown in Fig. 5 (d, e, f). 

 

Fig. 5. Measurement of a step-like phase object with a maximum step of 2.8 radians (a,d), 1.5 
radians (b,e), and 0.7 radians (c,f). The phases in (a,b,c) and (d,e,f) correspond to the direct 
solution of Eq. (6) and the GPC based CP-RPSA solution, respectively. A phase cut through 
the center of the object (g, h, i) and a histogram of the phase values (j, k, l) is shown in the 
equivalent figure row. A median filter of size 9x9 and an offset correction has been applied to 
the figures (g) to (l) for better visualization. The measurements have been conducted in the 
setup of Fig. 4 using a wavelength of 633nm with K ~0.761. All units are in radians. 

A phase cut through the center of the object (g, h, i) and a histogram of the phase values 
(j, k, l) highlight these results and are shown in the equivalent figure row of Fig. 5, for the 
case of Eq. (6) with N = 19 (blue curve) and the CP-RPSA algorithm with N = 19 (red curve). 
For comparison, the histogram of a CP-RPSA based phase reconstruction with N = 5 is 
plotted as well (green curve). Figure 6 shows the estimated phase shifts θn for the case of Fig. 
5d, which show to follow a sinusoidal curve when stepping linearly the polarization angle of 
the illumination wave. This trend is expected, due to the polarization based phase shifting 
technique in Fig. 4. The sinusoidal behavior originates from the dependence of the phase shift 
as function of the direction of polarization with respect to the alignment of the liquid crystal 
molecules and coincides with theoretical predictions [18,26,27], i.e. as reported in [18], 

 2 2cos sinn N n P nθ ≈ Φ Ψ + Φ Ψ  (18) 

where Ψn is the angle of the incident polarization, ΦN and ΦP are the on-axis phase changes 
for 0 and 90 degree input polarization. It should be noted, that once a measurement is carried 
out, the results of Fig. 6 could be used as a pre-estimate of the phase shift for future 
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measurements; the task of the CP-RPSA algorithm is then to remove the PSE of the non-
linear phase filter response. 

 

Fig. 6. Sinusoidal behaviour of the estimated phase shifts θn for the case of Fig. 5d 

Another application of this quantitative phase imaging technique is given in the field of 
life-sciences, where the aim is to obtain a quantitative estimate of the morphology of a label-
free biological sample. Figure 7 shows these measurement results for a single protozoan using 
the system depicted in Fig. 4, where a series of 3 interferograms have been obtained. Figure 
7a, 7b, and 7c show the recorded intensities at the phase shift angles of −0.490, −0.117, and 
0.142 radians, respectively. For visualization purposes only the first 120 out 256 gray levels 
are shown. The reconstructed wrapped and unwrapped phase is shown in Fig. 7d and 7e, 
respectively. It is interesting to notice that once a quantitative phase estimate is obtained, it is 
possible to simulate any view that would be obtained in different microscope configuration: 
Fig. 7f shows an example of an equivalent view in differential interference microscopes 
(DICs). 

 

Fig. 7. Quantitative phase imaging for an unlabelled biological object (protozoan) using the 
measurement system of Fig. 4. Fig (a), (b), and (c) show the recorded intensities at the phase 
shift angles of −0.490, −0.117, and 0.142 radians, where only the first 120 gray levels are 
shown for better visualization. The wrapped and unwrapped phase in radians is shown in (d) 
and (e) respectively. The phase in (d) is used to simulate equivalent DIC view, which is shown 
in (f). 
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4. Discussions 

4.1 Optimal common path configurations 

The self-calibrating CP technique presented here takes advantage of the polarization 
controlled nonlinearity of the optical phase filter in order to obtain an optimal common path 
interferometer. The shape and width of the phase filter do not change with polarization, 
because the intensity profile of the illumination beam remains unchanged. It should be noted 
however, that there is a lower threshold for the induced phase shift due to the Frederick 
transition as well as an upper bound of the possible phase change due to saturation [28]. The 
threshold of the Frederick transition can be altered via voltage and the maximum phase 
change due to saturation depends on the cell thickness [29]. A suitable non-linear material 
keeps the contribution of the side-lobes below the threshold of the Frederick transition. Due 
to this effect, the width of the resulting phase filter is always smaller than the main lobe of the 
Airy function at the Fourier plane (see Fig. 1). This allows operating the CP system under 
optimal conditions [16] with respect to flatness of the reference beam, and visibility, i.e. 
giving 0.4 < η < 0.627, where η = R1 / R2, R1 is the radius of the phase filter, and R2 is the 
radius of the main lobe of the Airy function at the Fourier plane [16]. Notably, as described 
by Gluckstadt [16], such values of η would not be obtained when using pixelated SLMs, 
because the actual value of η only optimizes specific CP configurations, where the optical 
system matches the pixel size or multiples of this. For comparison, static optical filters as 
reported by Creath [30] and Koliopoulos [31] achieve a value of η ~3 and η ≤ 0.5, 
respectively, where notably the latter system operates in the infrared regime. 

4.2 Minimal system calibration requirements 

The quantitative phase measuring technique presented in Section 2 allows estimating the 
object phase from a series of phase shifted interferograms that are obtained in a CP 
configuration with unknown phase shifts, but takes into account the GPC based image 
formation that is represented by the matrix q. Notably, as it is the case for all phase shifting 
algorithms in CP systems, a given knowledge of the constant C is required to calculate the 
phase estimate, i.e. for the CP-RPSA presented here to calculate the matrix q. Usually, the 
constant C is estimated within the system calibration (see [17] and other literature by the 
same author). For an optimized system however, the constant C can be estimated in a simpler 
way. An example is presented in the following: consider an optimized common-path system, 
where the value of η is between 0.4 to 0.627, so that the values of K are found between 0.506 
to 1. Because the system has to fulfil the fill-factor requirements (e.g. the illumination area is 
at least 10 times larger than the object area), one obtains |α| ~1 and C = K, and therefore a 
value of C in the range between 0.506 to 1. For those optimized systems, it has been observed 
that the measurement and CP-RPSA based reconstruction of a known phase object can only 
be achieved for the correct choice of C, where accurate estimates give highest convergence 
speed. Usually, the impact of the actual value of C on the CP-RPSA convergence is very 
strong, small deviations of the real value of C increase significantly the number of iterations, 
e.g. a few 10 iterations become a few hundred iterations. Moreover, wrong values of C may 
even cause the solver to be trapped in a local minimum. This observation may be used to 
either refine the initial estimate of C, or estimate the value of C using no calibration data. In 
this way the actual value of C is estimated. 

Furthermore, the fill-factor requirements of CP systems [23] imply that the object 
dimensions are small compared to the illumination, i.e. |α|~1, so that changes in the constant 
C with C = K·|α| are negligible. During the calibration procedure it is possible to verify this 
condition using known phase objects. Once the system is adjusted and calibrated, quantitative 
measurements of phase objects are possible without the need of phase shift calibrations. 
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5. Conclusions 

This work presents a self-calibrating phase shifting algorithm for quantitative phase 
measurements in CP configurations from interferograms with arbitrary and unknown phase 
shifts. Section 2.1 derives an algorithm that allows estimating the phase from a series of 
arbitrary but known phase shifts, which equations include the GPC based image formation. 
The influence of the GPC theory is represented by the matrix q, which in case of classical 
two-beam interferometry would not exist (compare Eq. (3) with Eq. (6)). Nevertheless, the 
model of classical interferometry cannot be applied to CP-configurations: it is shown that the 
direct solution to Eq. (6) leads to severe errors, as it is shown in Fig. 2. On the contrary, when 
using the GPC based CP-RPSA, an accurate result is obtained for both the case of no noise 
and AWGN with σΙ = 0.05 (see Fig. 2). The simulations indicate the importance of GPC 
based reconstructions. The simulations in Fig. 3 further verify the accuracy of this approach, 
and show that the CP-RPSA allows correcting for phase shift errors and thereby improving 
significantly the reconstruction accuracy. Notably, the principle of this algorithm is based on 
the RPSA algorithm of reference [20], however, more sophisticated techniques may be 
employed that account for harmonics in the measured intensity similar to the case of [32]. 

The approach presented here has also been verified experimentally using a non-linear 
phase contrast microscope that has a dye doped LC as an active phase filter at the Fourier 
plane. The phase change in the LC material is self-induced by its optical non-linearity giving 
a self-aligned phase filter with optimum dimensions with respect to the illumination beam. 
The diminutive size of these phase filters depends only on the width of the focussed incident 
illumination. It is shown that it is possible to operate a CP configuration with η ~0.515, a 
value that is estimated to be (according to the GPC theory [16]) in the optimal range of 0.4 < 
η < 0.627. An appropriate choice of the nonlinear material [28] allows creating experimental 
conditions that provide a good compromise between a low curvature [16] and a large 
amplitude [24] of the reference wave for imaging systems that fulfil the fill-factor 
requirements [23]. It is shown that this technique can be employed in CP systems, which use 
highly nonlinear LC based phase filters. The major difficulty in handling those types of filters 
is given by the accurate phase shift calibration due to a number of time-variant error sources. 
This work shows how this problem is overcome when employing the self-calibrating CP-
RPSA that is derived in Section 2.2. In this way, quantitative phase measurements are 
possible. This is verified experimentally using the measurement device of Fig. 4 [18] and a 
series of well-known phase objects (see Fig. 5). Furthermore, as shown in Fig. 7, the 
measurement techniques presented here can also be applied to the field of a label-free 
quantitative phase imaging of biological samples using only three images. Once the phase of 
the object is obtained, it is possible to refocus the field to a different plane using e.g. the 
angular spectrum method [33], or to digitally create views that would be obtained in various 
microscopes. Figure 6f shows the example of an equivalent DIC view that is obtained 
digitally from the quantitative phase measurement. 

On a final note, LC phase filters used in those CP configurations have unique advantages 
in terms of cost-effectiveness and performance for a wide range of optical systems (due to the 
low value of η, see Section 4 and reference [16]) when compared to SLM based solutions that 
have a fixed pixel size and thereby only operate optimal for a specific optical configuration. 
For the particular system in Fig. 4, one can achieve measurements at higher temporal 
bandwidths by replacing the half-wave plate with a voltage controlled LC based polarization 
rotator. 

The quantitative phase measurement technique reported here has numerous applications in 
the wavefront sensing, optical metrology, microscopy, and label-free quantitative phase 
imaging of biological samples. 
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