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1. INTRODUCTION

A gradient index rod with quadratic index dependence in the
radial coordinate (that we simply denote as GRIN) is usually
employed in focusing and image formation [1]. An issue of
theoretical and practical interest is that GRIN media can sup-
port invariant propagation modes, either in the paraxial [2] or
the nonparaxial domains [3]. In a similar context, the appear-
ance of self-images of periodic fields propagating in a GRIN rod
has been established [4,5]. On the other hand, in a conceptual
context, a GRIN medium has been employed in the formu-
lation of the fractional Fourier transform [6,7].

An interesting effect is the revival of an arbitrary monochro-
matic optical field, propagating in a GRIN medium, which has
been derived assuming the first-order approximation of the
propagation operator. For reasons to be exposed later, we will
call this process “short period revival.”We discuss another kind
of propagation revival, which is shown by an off-axis Gaussian
beam of appropriate parameters during its propagation in a
GRIN rod. The revival period in this process is large in com-
parison to the period in the first-order case. Therefore the proc-
ess is referred to as long period revival. Another interesting
phenomenon that we also discuss in this context is the multiple
splitting of the Gaussian beam, appearing at fractions of the
revival length.

The long period revival and beam splitting in a GRIN rod
have been previously established in [8]. It was done noting that
the propagation operator in this device, approximated to sec-
ond order, is formally equivalent to the evolution operator in a
quantum Kerr medium, where the temporal revival and split-
ting had been established for coherent quantum states [9]. Such

long period effects in the GRIN rod have been analyzed for
one−dimensional fields, and considering only the two-beam
splitting. Here we extend the discussion of such effects to the
case of two-dimensional fields and consider multiple beam split-
ting. In Section 2, we discuss the solution of the Helmholtz
equation for a quadratic GRIN medium in terms of eigenfunc-
tions, and establish the second-order approximation of the
propagation operator. The long period revival and multiple
beam splitting are analytically derived from this approximation.
In Section 3 we perform computational simulations to illustrate
the splitting and revival of a Gaussian beam, propagating in a
GRIN device at specific conditions. The discussion of the results
and concluding remarks are presented in Section 4.

2. THEORY

A. Propagation in a Quadratic GRIN Medium

Let us consider a transparent cylindrical rod (Fig. 1) whose
refractive index is quadratic in the radial coordinate
r � �x2 � y2�1∕2, one of whose extreme faces is at the plane
z � 0. The Helmholtz equation for this medium can be
expressed as

∂2E
∂z2

� −

�
∂2

∂x2
� ∂2

∂y2
� k2n20�1 − g2�x2 � y2��

�
E; (1)

where k is the wavenumber, n0 is the axial refraction index, g is
the gradient index parameter, and E�x; y; z� is the optical field.

Introducing the definitions κ � kn0, η � κg , and the num-
ber operators n̂x�x� and n̂y�x�, such that 2η�n̂ξ � 1∕2� �
�−id∕dξ�2 � η2ξ2�ξ � x; y�, Eq. (1) can be rewritten as [10]
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∂2E
∂z2

� −�κ2 − 2η�n̂x � n̂y � 1��E; (2)

whose formal solution, in terms of the boundary condition
E�x; y; 0�, is

E�x; y; z� � exp�iz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ̃2 − 2η�n̂x � n̂y�

q
�E�x; y; 0�; (3)

with κ̃2 � κ2 − 2η.
To establish the second-order approximation of the propa-

gation operator in Eq. (3), we develop the square root as a
Taylor series and adopt only the first- and second-order terms,
obtaining

E�x; y; z� � expf−iz�β�n̂x � n̂y� � γ�n̂x � n̂y�2�gE�x; y; 0�;
(4)

where β � η∕κ̃ and γ � η2∕�2κ̃3�. The zero order term in the
Taylor series, which is a constant phase factor, is omitted
in Eq. (4).

For our further analysis, we consider the eigenfunctions of
the number operators n̂x�x� and n̂y�x� [11], given by

φn�ξ� �
�
η

π

�
1∕4 1ffiffiffiffiffiffiffiffi

2nn!
p exp

�
−
η

2
ξ2
�
Hn�

ffiffiffi
η

p
ξ�;

ξ � x; y; n � 0; 1; 2…; (5)

where Hn are the Hermite polynomials. The boundary condi-
tion, expressed in terms of these eigenfunctions, is

E�x; y; 0� �
X∞
n�0

X∞
m�0

cnmφn�x�φm�y�; (6)

with coefficients

cnm �
Z

∞

−∞

Z
∞

−∞
E�x; y; 0�φn�x�φm�y�dxdy; (7)

Applying the propagation operator [Eq. (3)] to the boundary
condition, we obtain the propagated field

E�x; y; z� �
X∞
n�0

X∞
m�0

cnmφn�x�φm�y� exp�iz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ̃2 − 2η�n� m�

p
�:

(8)

The second-order approximation of this field, obtained by
using the propagator in Eq. (4), is

E�x; y; z� �
X∞
n�0

X∞
m�0

cnmφn�x�φm�y�e−iβz�n�m�e−iγz�n�m�2 . (9)

In the first-order approximation, the second complex expo-
nential in Eq. (9) is removed and the well-known short range
revival along z, with period pz � 2π∕β, is established.

B. Long-Range Revival and Multiple Split Effects

The one-dimensional field for which the long period revival
and splitting were formerly studied [8] is

ψα�x� � exp�−jαj2∕2�
X∞
n�0

αnffiffiffiffi
n!

p φn�x�; (10)

which has the structure of a quantum coherent state [12]. Using
the Hermite polynomials exponential generating function
exp�2xt − t2� � P∞

n�0 Hn�x�tn∕n! [11], valid for x and t com-
plexes, it is shown that ψα�x� is the Gaussian function [13],

ψα�x� �
ffiffiffi
η

π
4

r
exp

�
−
η

2

�
x −

ffiffiffi
2

η

r
R�α�

�
2
�

× expfi
ffiffiffiffiffi
2η

p
I�α�x − iR�α�I�α�g; (11)

where R�α� and I�α� are the real and imaginary parts of α, re-
spectively. For the two-dimensional case to be discussed here, we
consider the boundary condition ψα�x; y� � ψα�x�ψα�y� given
by

ψα�x; y� � exp�−jαj2�
X∞
n�0

X∞
m�0

αn�mffiffiffiffiffiffiffiffi
n!m!

p φn�x�φm�y�: (12)

According to Eq. (11), ψα�x; y� represents an off-axis
Gaussian beam with equal displacements, proportional to
R�α�, along the x and y axes. The second-order approximation
for the propagated field [Eq. (9)], obtained for this boundary
condition, is

E�x; y; z� � exp�−jαN j2�
X∞
n�0

X∞
m�0

αn�m
Nffiffiffiffiffiffiffiffi
n!m!

p φn�x�φm�y�

× exp�−iγz�n� m�2�;
αN � α exp�−iβz�: (13)

A first interesting result occurs for the propagation distance
z � zR � π∕γ. In this case, the exponential within the sum in
Eq. (13) becomes �−1�n�m and the propagated field can be ex-
pressed as

E�x; y; zR� � ψαR �x; y�; (14)

where αR � −α exp�−iπβ∕γ�. Thus, the propagated field at the
plane z � zR is a revival of the input field [Eq. (12)] with α
replaced by αR .

Let us compare the revival period zR � π∕γ with the period
pz � 2π∕β, established in the first-order approximation. We
first recall the definitions of parameters β and γ, below
Eq. (4), and the other related parameters, η, κ, and κ̃, to estab-
lish pz � 2πκ̃∕�κg� and zR � pz κ̃

2∕�κg�. Now, considering
that the relation g ≪ κ is fulfilled (which is usual in practical
cases), we can establish the approximations κ̃ ≅ κ, pz ≅ 2π∕g ,
and zR ≅ pz�κ∕g�. As a consequence, we obtain zR ≫ pz ,
which justifies calling pz and zR short and large revival periods,
respectively.

Now we consider that z � zS � π∕2γ. In this case, noting
that the exponential within the sum in Eq. (13) is
�−1�n�mi�n�m�2 , the propagated field is expressed as

E�x; y; zS� � e−jαS j2
X∞
n�0

X∞
m�0

αn�m
Sffiffiffiffiffiffiffiffi
n!m!

p φn�x�φm�y�i�n�m�2 ; (15)

Fig. 1. Cylindrical GRIN rod.
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where αS � −α exp�−iπβ∕2γ�. Noting that i�n�m�2 is either
1 for n� m even or i for n� m odd, Eq. (15) can be
expressed as

E�x; y; zS� �
1

2
e−jαS j2

X∞
n�0

X∞
m�0

αn�m
Sffiffiffiffiffiffiffiffi
n!m!

p φn�x�φm�y��1��−1�n�m�

� i
2
e−jαS j2

X∞
n�0

X∞
m�0

αn�m
Sffiffiffiffiffiffiffiffi
n!m!

p φn�x�φm�y�

× �1 − �−1�n�m�: (16)

Performing some additional algebra in Eq. (16), we obtain

E�x; y; zS� �
1ffiffiffi
2

p �eiπ∕4ψαS �x; y� � e−iπ∕4ψ−αS �x; y��: (17)

Therefore, the field propagated to the plane z � zS presents
the two-fold splitting of the input field ψα�x; y�. Below
Eq. (11), it is established that the lateral shift of the one-
dimensional Gaussian field ψα�x� is proportional to the real
part of α. Since this result also occurs for the two-
dimensional Gaussian beam ψα�x; y�, the two fields in
Eq. (17) are shifted symmetrically with respect to the origin
in the (x, y) plane.

Extending the procedure employed in previous cases, we can
expect the presence of multiple splitting of the Gaussian beam,
considering a propagation distance z � zQ � π∕Qγ, with
Q > 2. Next we establish explicitly the four-fold splitting,
which is expected to occur at z � z4 � π∕4γ. Considering this
propagation distance in Eq. (13), we obtain

E�x; y; z4� � exp�−jαM j2�
X∞
n�0

X∞
m�0

αn�m
Mffiffiffiffiffiffiffiffi
n!m!

p φn�x�φm�y�

× exp

�
−i
π

4
�n� m�2

�
; (18)

where αM � −α exp�−iπβ∕4γ�. Next, noting that the complex
exponential in Eq. (18) takes the values i�n�m�, for n� m even,
and exp�−iπ∕4�, for n� m odd, the field can be expressed as

E�x; y; z4� �
1

2
e−jαM j2

X∞
n�0

X∞
m�0

�iαM �n�mffiffiffiffiffiffiffiffi
n!m!

p φn�x�φm�y�

× �1� �−1�n�m�

� i
2
e−jαM j2e−iπ∕4

X∞
n�0

X∞
m�0

αn�m
Mffiffiffiffiffiffiffiffi
n!m!

p φn�x�φm�y�

× �1 − �−1�n�m�: (19)

Finally, employing the definition of the boundary condition in
Eq. (12), the four implicit terms in Eq. (19) are expressed as

E�x; y; z4� �
1

2
ψ iαM � 1

2
ψ−iαM � e−iπ∕4

2
ψαM � e−iπ∕4

2
ψ−αM :

(20)

The field in Eq. (20) is formed by four replicas of the
initial field ψα�x; y� with modified values for α, given by
iαM , −iαM , αM , and −αM . Recalling that the beam displace-
ments are the real parts of the modified alphas and that
αM � −α exp�−iπβ∕4γ�, the displacements of the beams
in Eq. (20) are proportional to sin�πβ∕4γ�, − sin�πβ∕4γ�,
cos�πβ∕4γ�, and − cos�πβ∕4γ�.

We point out that, to predict the revival and split fields, it
was necessary to take three terms in the Taylor expansion of the
exact field propagation operator [Eq. (3)]. Such effects cannot
be predicted by the first-order approximation alone and are dif-
ficult (if not impossible) to be obtained analytically from the
exact propagation operator. Indeed, the presence of the second
exponential in Eq. (9), quadratic in �n� m�2, was explicitly
required to obtain the mentioned effects.

3. NUMERICAL SIMULATIONS

The propagated field for different cases will be computed em-
ploying the paraxial, the second-order, and the exact ap-
proaches. In particular, we will show that the splitting and
revival effects occur for restricted values of the parameters α,
g , and κ.

For an initial validation of our theoretical results obtained
in the previous section, we consider the boundary condition in
Eq. (12) with α � 0, which reduces to ψα�x; y� � φ0�x�φ0�y�,
the zero order eigenmode of the GRIN medium. The
normalized intensity of this field is depicted in Fig. 2. The
position units are normalized respect to the waist radius
of the Gaussian beam that, according to Eq. (11), is
ω0 � �2∕η�1∕2. It is obvious from Eqs. (8) and (9) that the
intensity profile of the propagated field in this case, for any
of the approaches, and arbitrary propagation distance z, is iden-
tical to that of the initial Gaussian beam (Fig. 2).

In the following examples, we will assume different values of
the ratio g∕κ. It will be shown that this ratio provides a measure
of the relative weight of the different orders in the Taylor series
of the propagation operator.

As a second example, let us consider that the boundary con-
dition is the coherent state [Eq. (12)] with a shift parameter
α � 2, and that the GRIN medium parameters obey the rela-
tion g∕κ � 10−4. The computed intensities of the field at the
planes z � n�pz∕4�, n � 0…3, employing the first-order ap-
proach, are displayed in Fig. 3. The field at z � pz (not shown)
is identical to the one at z � 0. As expected, during its propa-
gation, the field oscillates around the optical axis on a diagonal
axis in the field of view, which is depicted in Fig. 3(a). The
position coordinates, shown in Fig. 3(c), are identical for
the four images. It is found that the fields computed with
the second-order and exact approaches are, in this case, almost
identical to those in Fig. 3. Figure 4 shows the normalized field
intensity profile on the diagonal oscillation axis as a function of
z, in the propagation range �0; pz �. In this figure, and others, the

Fig. 2. Intensity of a Gaussian beam with null shift (α � 0).
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position along the diagonal is denoted by s. The results in this
second example are also consistent with already known facts
about a GRIN medium [14].

As a third example, we consider the field around the
plane z � zS , where the two-beam splitting is expected, main-
taining the parameter α � 2 and the ratio g∕κ � 10−4. The
intensities of the field, computed with Eq. (7), at the planes
z � zS � n�pz∕4�, n � −2; −1; 0, and 1, are displayed in
Fig. 5. The intensity values, in the gray scale bars, are normal-
ized with respect to the peak intensity of the coherent mode (at
plane z � 0). It is noted in Figs. 5(a) and 5(c) that, in this case,
the original coherent mode [Fig. 3(a)] has been split into two
identical modes, symmetrically arranged with respect to the op-
tical axis. The two modes, which are oscillating around the op-
tical axis, interfere at this axis at the planes z � zS − pz∕4 and
z � zS � pz∕4 [Figs. 5(b) and 5(d)]. The detailed oscillation of

the field, depicted in Fig. 6, shows the field intensity profile on
the diagonal oscillation axis, as a function of z, in the z range
[z � zS − pz∕2, z � zS � pz∕2]. The values of z∕pz , in
Fig. 6, correspond to the gradient index g � 104 m−1.
Quite similar results are obtained in this case using the
second-order approach. However, the use of the first-order
approach in this case gives results similar to those in Fig. 3
which obviously are not correct.

Now let us consider the revival field. The field intensity pro-
file on the diagonal axis, as a function of z, in the propagation
range [z � zR − pz∕2, z � zR � pz∕2], computed with the ex-
act approach, is displayed in Fig. 7. In this figure, the values of
z∕pz also correspond to g � 104 m−1. It is noted that this in-
tensity profile shows small but visible differences respect to the
field obtained near the plane z � 0 [Fig. 4]. In particular, the
intensity at the revival plane z � zR is quite similar to that at

Fig. 3. Transverse oscillation of the input Gaussian field with shift
α � 2 and parameter ratio g∕κ � 10−4. The depicted intensities cor-
respond to the propagation distance (a) z � 0, (b) z � pz∕4,
(c) z � pz∕2, and (d) z � 3pz∕4.

Fig. 4. Normalized field intensity on the diagonal oscillation axis
(with positional coordinate s) versus z, in the range �0; pz �, for the in-
put Gaussian field shift α � 2, and parameter ratio g∕κ � 10−4.

Fig. 5. Two-beam splitting of the input Gaussian beam with param-
eters α � 2 and g∕κ � 10−4. The depicted intensities correspond to
the propagation distance (a) zS − pz∕2, (b) zS − pz∕4, (c) zS , and
(d) zS � pz∕4.

Fig. 6. Normalized field intensity on the diagonal oscillation axis
versus z, in the range �zS − pz ; zS � pz �, for the input Gaussian field
shift α � 2, and parameter ratio g∕κ � 10−4.
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z � 0. Thus, the exact computation in this case also confirms
the prediction of the second-order approach.

We point out that the appearance of the split and revival
effects depends on the ratio g∕κ. In the previous numerical
evaluations of these effects, the chosen ratio g∕κ � 10−4 allows
the appearance of the effects for the shift parameter α � 2. If
we assume, for instance, g∕κ � 10−3 and α � 2, the field
intensities at the planes z � zS and z � zR , computed with
the exact approach, are those displayed in Figs. 8(a) and 8(b).
Although the split and revival effects still occur in this case, the
replicas of the initial coherent state in the propagated fields
appear distorted. If we assume g∕κ � 10−2 and α � 2, the field
intensities at the splitting and revival planes, computed with
the exact approach and displayed in Figs. 8(c) and 8(d), indicate
that the predicted effects are no longer verified. We point out

that the computation with the second-order approach still pro-
vides the previously obtained results [Figs. 3(a) and 5(a)].
However, in the present case, the prediction of the second-
order approach has not been confirmed by the exact
computation.

There is a dependence between the ratio g∕κ, required to
obtain the split and revival effects, and the value of the shift
parameter α. Increased values of α require smaller ratios
g∕κ. Let us consider, as an example, the splitting fields for a
shift parameter α � 4, and two different values of g∕κ: 10−4
and 10−5. The intensities of the computed fields at the splitting
distance (z � zS), displayed in Fig. 9, show that the split fields
appear distorted for g∕κ � 10−4 and take the appropriate shape
for g∕κ � 10−5.

We also computed the field obtained at the distance
z � π∕4γ, for which the four-fold splitting [Eq. (20)] is ex-
pected. The intensity field at this plane, computed for
the parameters α � 2 and g∕κ � 10−4, and displayed in
Fig. 10(a), seems to be formed by four shifted replicas of
the initial coherent state. Two of these replicas are interfering
at the optical axis, and the other two appear at the extremes of
the image. The four-fold splitting is more visible if we take a
new shift parameter α � 4, assuming g∕κ � 10−5. In this case,
the field intensity at the plane z � π∕4γ − �pz∕16� [Fig. 10(b)]
clearly shows the four shifted replicas of the input Gaussian
beam. The shift pz∕16 (introduced in z) is required to obtain
the replicas of the Gaussian beam uniformly distributed in the
field of view. Thus, the fields in Fig. 10, computed with the
exact approach, confirm the four-beam splitting predicted by
the second-order approach.

Fig. 7. Normalized field intensity on the diagonal oscillation axis
versus z, in the range �zR − pz ; zR � pz �, for the input Gaussian field
shift α � 2, and parameter ratio g∕κ � 10−4.

Fig. 8. (a) Two-beam splitting and (b) and revival of the input
Gaussian beam with parameters α � 2 and g∕κ � 10−3. These effects
disappear (c), (d) when the ratio g∕κ is increased to 10−2.

Fig. 9. Two-beam splitting of the input Gaussian beam with a shift
parameter α � 4 and ratio g∕κ with values (a) 10−4 and (b) 10−5.

Fig. 10. Four-beam splitting for the combinations of parameters
(a) (α � 2, g∕κ � 10−4), and (b) (α � 4, g∕κ � 10−5). The propa-
gation distances are z � π∕4γ and z � π∕4γ − �pz∕16�, respectively.
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4. DISCUSSION AND FINAL REMARKS

Let us briefly analyze the conditions for validity of the second-
order approximation of the propagated field [Eq. (13)]. To
establish such conditions, it is convenient to express the propa-
gated field employing the propagation operator approximated
to third order. In this case, the propagated field is given by

E�x; y; z� � exp�−jαj2�
X∞
n�0

X∞
m�0

αn�mffiffiffiffiffiffiffiffi
n!m!

p φn�x�φm�y�

× expf−iz�β�n� m� � γ�n� m�2 � ξ�n� m�3�g;
(21)

where ξ � η3∕�2κ̃5�. We note that the second-order approxi-
mation [Eq. (13)] is valid when the third term, ξ�n� m�3, in
the exponential of the propagation factor in Eq. (21), is neg-
ligible respect to the second term, γ�n� m�2. In other words,
we require that the quotient of these terms, R � �n� m�ξ∕γ,
be much smaller than unity. Now, recalling the expressions
ξ � η3∕�2κ̃5� and γ � η2∕�2κ̃3�, and assuming g∕κ ≪ 1 (as
is the case in the considered examples) it is found that
ξ∕γ ≪ 1. On the other hand, it is noted that the first factor
in R, (n� m), increases for large order modes (in Eq. (21)).
In addition, the necessity of considering high-order modes in-
creases for high values of α. This fact explains why the second
factor in R, (≈g∕κ), must be reduced while α increases. In the
examples considered in Section 3, we have shown numerically
that the splitting and revival effects occur appropriately in a
GRIN medium adopting g∕κ < 10−4 for α � 2 and g∕κ <
10−5 for α � 4.

Let us evaluate the waist radius of the input Gaussian beam
which, as stated in Section 3, is ω0 � �2∕η�1∕2. Assuming, e.g.,
the gradient index g � 100 m−1, and the parameters quotient
g∕κ equal to 10−4 and 10−5, employed in the numerical sim-
ulations, the waist radius of the coherent state adopts the values
ω0 ≈ 141 μm and ω0 ≈ 45 μm, respectively. These radii of
the input beams are relatively small, but reasonable from the
physical point of view.

Now we compute the propagation distances at which the
revival and splitting effects can be observed. First we note that,
considering the quotient g∕κ � 10−4, the relations zR �
2zS � pz�κ∕g� are approximately valid, and we obtain that
the splitting and revival effects occur at propagation distances
zS � 5000pz and zR � 10000pz , respectively, where pz �
2π∕β is the short period revival. Such large distances appear
at the simulations illustrated in Figs. 6 and 7. On the other
hand, considering g∕κ ≪ 1, the period pz is approximated
to 2π∕g . According to published data [15–17], the values of
the gradient parameter g, for conventional GRIN devices op-
erating in the visible domain, are in the range from 102 m−1 to
104 m−1. For the extreme gradient index g � 104 m−1, and the
assumed quotient g∕κ � 10−4, we obtain the short revival
period pz � 2π × 10−4 m, while the large two-fold split and
revival distances are zS ≈ 3.14 m and zR ≈ 6.28 m, respec-

tively. Such propagation distances are too large for conventional
GRIN devices. If n0 � 1.5, the required wavelength for the
considered parameters is λ ≈ .094 μm, which belongs to the
UV range. Since assuming the condition g∕κ ≪ 1, we estab-
lished zR ≈ �κ∕g�pz ; the distance zR can be reduced by taking
larger values for g∕κ, e.g., maintaining g � 104 m−1 and taking
g∕κ � 10−2 one obtains zS ≈ 3.14 cm and zR ≈ 6.28 cm.
The required wavelength in this last case is λ ≈ 9.4 μm, which
belongs to the medium IR range.

In summary, we have discussed the large period revival and
multiple beam splitting of an appropriately shaped and shifted
Gaussian beam, propagating in a GRIN medium. Such effects
are predicted by means of the propagation operator approxi-
mated to second order. The propagation distances required
to observe the large period revival and split effects are large
in comparison to lengths of available GRIN rods. Therefore,
the experimental implementation and application of such
effects are challenging tasks to be realized today.
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