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Ground state in the finite Dicke model for interacting qubits
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We study the ground state of a finite-size ensemble of interacting qubits driven by a quantum field. We find a
maximally entangled W state in the ensemble part of the system for a certain region of the coupling parameters.
The area of this region decreases as the ensemble size increases and, in the classical limit, becomes the line in
parameter space that defines the phase transition of the system. In the classical limit, we also study the dynamics
of the system and its transition from order to disorder for initial energies close to the ground-state energy. We
find that a critical encrgy providing this transition is related to the minimum of the projection of the total angular

momentum of the quantum system in the z direction.
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L. INTRODUCTION

A set of N, interacting qubits coupled to a quantized ficld
may be described by the Hamiltonian

" ~ o - A o

A =w/N+8J, + quJf + @ +ahd, )
where the detuning, § = w — wy, is defined as the difference
between the qubit transition frequency, w, and the quantized
field frequency, wy; the field-ensemble and the interqubit
coupling are given by the constants A and 7, respectively;
the orbital angular momentum representation, J; with i =
x,¥,z,%, such that [.]j,jj] = fffjkjk, describes the qubit
ensemble; the creation (annihilation) operators describe the
field, at (a); and the total number of excitation in the system
is given by the operator N = a'a + J, + N, /2. This model
may be realized with trapped hyperfine ground states of a
Bose-Einstein condensate inside a microwave cavity [1-4] or
with arrays of interacting superconducting qubits coupled to
the quantum field mode in a coplanar waveguide resonator [5]
where a no-go theorem may [6] or may not [7] exist, or with
coupled nitrogen vacancy centers interacting with a planar
microwave cavity [8].

Beyond the fact that this Hamiltonian describes an ex-
perimentally feasible system that goes from integrable at
A =0 [9] to quasi-integrable at n = 0 [10], our interest is
twofold. First, this Hamiltonian is equivalent to the Lipkin-
Meshkov-Glick (LMG) model [11] in the limit A = 0. The
LMG model produces maximal entanglement at the first-order
(second-order) quantum phase transition of the ground state if
the coupling is antiferromagnetic (ferromagnetic) [12,13]. The
ground-state phase transition of the Hamiltonian in Eq. (1) has
been studied in the thermodynamic limit, N, — oo, within
and without the rotating wave approximation (RWA) [2] and
in the quantum regime, using coherent states for both the field
and ensemble, without the RWA [3]; these results show the
existence of a finite-size first-order quantum phase transition
and a second-order super-radiant phase transition. Finite-size
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quantum phase transitions in the ground state of the finite
Dicke model have been associated with entanglement between
the ensemble and the quantum field [14,15] and with bipartite
entanglement among qubits due to finite-size cffects [16-18].
Thus, for a sufficiently low field-ensemble coupling and an
adequate interqubit coupling, it may be possible to obtain
a maximally entangled state of the ensemble in the ground
state of the system described by Eq. (1). Entanglement is a
fundamental quantum mechanical phenomenon [19-23] and a
precious resource in quantum information processing [24,25].
For a qubit ensemble, a W state [26] maximizes pairwise
entanglement of formation [27,28] and is a robust source
of entanglement [29,30]; i.e., it retains maximal bipartite
quantum correlations whenever any pair of qubits are traced
out. We will show that such a state is produced in the
ground state of the Hamiltonian in Eq. (1) for a given
parameter regime. Second, it has been recently shown that
the finite-size Dicke model, n = 0, shows two excited-state
quantum phase transitions; one for any given coupling at
an energy rate 2E/(wN,;) =1 [31,32] and another at the
superradiant phase at an energy rate 2E/(wN,) = —1 [33].
These transitions have been shown as peaks in the Peres lattice
[34] of the system and a transition from order to disorder
in the equivalent classical system has been shown around
these energy rates [35]. The latter, the so-called excited-state
quantum phase transition, is related to the unstable fixed
points of the classical Dicke Hamiltonian. Some of us have
shown the existence of stable and unstable fixed points that
produce symmetric and asymmetric dynamics in the classical
equivalent of Hamiltonian Eq. (1) under the RWA [36].

In the following, within the RWA and for weak interqubit
coupling, we will show analytically that the maximal en-
tanglement produced by the quantum phase transition in the
Lipkin-Meshkov-Glick model is retained in the Dicke model
for interacting qubits. Furthermore, for a fixed field-ensemble
coupling, A, the interqubit coupling, 1, defines a series of
first-order phase transitions related to the number of qubits
in the ensemble, N,, while, for a fixed interqubit coupling,
there exists one second-order phase transition related to the
couplings ratio [3] and a series of first-order transitions
similar to those in the Dicke model under the RWA [16,17].
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Also, in Sec. II we will show analytically in the weak
coupling regime, and numerically in general, that the inclusion
of counterrotating terms does not erase the possibility of
obtaining a maximally entangled multiqubit state, Then, in
Sec. III, we will find the fixed points of the classical analog
of the Dicke model for interacting qubits without the RWA
and calculate the critical coupling parameter related to them;
this parameter should be identical to that of the quantum case
with an ensemble of infinite size. Also, we will show that
a transition from order to disorder in the classical dynamics
appears at exactly the value of the scaled energy corresponding
to the minimum of the J, operator in the quantum system,; in
our case this scaled energy is 2E/(wN,) = —1 and depends
linearly on the size of the qubit ensemble.

II. ENTANGLEMENT IN THE GROUND STATE

Here, we want to show that it is possible to find a maximally
entangled W state in the ground state of our Hamiltonian model
for a certain parameter set. For this reason, we need to start
with the exact ground state in the RWA,

A. Rotating wave approximation
The Hamiltonian in Eq. (1) under the RWA,

ﬁRWA — Cl)fﬁ + sz + ijzz +

A
N, T 2N,

@t +ati,

2

conserves the total number of excitations, thus the correspond-
ing Hilbert space can be partitioned into subspaces where
the Hamiltonian becomes a square matrix H® = Hy’ + H"”
with

N,
HO = wf( 7“) I, 3
(Hm) = & ;d; + L(5i =107 + 8 jy10541),  (4)
,_ v 2JA—’q_ ¥ ",

where the identity matrix of rank d is given by [ 4, the row and
column labels are in the range i,j = i,i+ 1,...,n, wWhere
fi = max(0,n — N,), for the photon number n =0,1,2,...
The symbol §; ; stands for Kronecker 8, and the diagonal and
off-diagonal terms are defined as

(o)) o

0j = j(N;+j—n)n—j+1). ©)

In each subspace the square matrix is a tridiagonal symmetric
real matrix with positive off-diagonal terms, i.e., a Jacobi ma-
trix, and its eigenvalues can be found analytically [37—40]. The
ground state of the system is found as the lowest eigenvalue
for the set { H™} for all values of n. Furthermore, a first-order
quantum phase transition is located at the intersection of two
ground-state energies belonging to contiguous subspaces.
The first ground-state structure, which we will call vacuum
phase from now on, corresponds to the vacuum field and the
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qubit ensemble state with zero excitation,
N, N,
il g (7
2 2

A first quantum phase transition, in a series of first-order
quantum phase transitions, is found at the critical coupling

strength,
1
lc=2‘/[w+(N—q— l) n] wy, (8)

with 0 < n < Nyw/(N, — 1).
After this critical curve in parameter space, the ground state

[y =10)

becomes
N, N, N, N,
[v7) = 10 [, m§)+c(|”|1) 2-2) o

= h/(h® +
1)'/2 related to the amplitude param-

The amplitudes are given by the expressions cf)”

D2 and &V = 1/(h2 +

eter,

(1 =1/Njn+8 — {432 +[(1 = 1/N,)n — §]*}'/2
21 ’

h =

(10)

In this first nonvacuum phase, the ground state is fully sep-
arable, |yr{V) = [1}|N,/2, — N,/2), in the limit k — 0; e.g.,
choosing § = 2A when A dominates. A second type of ground
state occurs in the limit # — %1, where there is maximal en-
tanglement between the field and the qubit ensemble, |y{V) =
(F0)[Ng /2,1 = Ng/2) + 11)INy /2, — Np/2))/v/2; eg., the
case h — —1 occurs when the field-ensemble coupling, X,
is dominant. And a third type, where the ground state of
the whole system is separable, [{") = |0)|N, /2,1 — N, /2),
occurs in the limit A — oo, in other words when 2 is small
compared to the numerator of Eq. (10). Here, the ensemble
part is maximally entangled as the qubit ensemble state
[Ng/2,1 — N, /2) is a W state. Note that the transition from
one case to the other is continuous in this first nonvacuum
ground state and any extended Dicke model that conserves
the total number of excitations has a first nonvacuum phase of
this form; e.g., a Dicke model that includes a quantized field
nonlinearity [18]. Also, the following phase of the ground
state,

(2) ZCU)U)

will make the area for the first nonvacuum ground state smaller
as the number of qubits in the ensemble grows. This may be a
problem in the BEC realization where the size of the ensemble
is large but this is not a problem in a circuit-QED realization
where the number of qubits is small.

Ngp_j_Ya
2-j~ 2), (11

B. Full model under weak couplings

Now, we want to show that the maximally entangled W state
shown at the first nonvacuum phase survives the inclusion of
counterrotating terms. We will use the unitary transformation,

0= @b £ = ANt op),  (12)
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in the weak coupling regime, A < w, such that& < 1. We will
also require a weak intraensemble interaction, n < w, then it
is possible to approximate,

ﬁcg =U0'A0 .

X
v Ny
with an auxiliary coupling strength X = 2w/A/(w + wy).
In other words, we have made an effective rotating wave

approximation, and we already know that such a system has a
first-order quantum phase transition at the critical value,

ALCR — (w+wf)\/;l; [w+ (NL - 1) n]- (14)
q

Note that on resonance the expression for the first critical
coupling in the weak coupling regime, Eq. (14), is equal to the
critical coupling in the rotating wave approximation, Eq. (8).
The ground state at the first nonvacuum phase is described
again by Eq. (9) if we make the substitution A — . Then,
the maximally entangled W state survives the inclusion of
counterrotating terms for the region of interest, i.e., the weak
coupling regime.

- -

~ wpdla + ol + 22+ —=@l +a'1), (13)
q

C. Semiclassical analysis

Here we present a semiclassical analysis of the ground state
just for the sake of completeness. In the Holstein-Primakoff
representation of SU(2) [41] for a large number of qubits in the
ensemble, J, = bt — N, /2, Jp ~ /Nb'(1 - g*b/(qu)),
and J_ ~ \/_q(l - be/(2Nq))5, the Hamiltonian in Eq. (1),
up to a constant, reduces to

A~ wpala+(—mblb+ F”«E*é)z
q

Aot (- BB _bbY,
+5@ +a)[5 (1 N, + |1 N, b|. (15)

Thus, we can consider a coherent state for both the field and
the qubit ensemble, |e) £|8),. to calculate the mean energy, up
to a constant,

2
(A) =~ wlal* + [w -7 (1 - ﬂ—l)] 18I
N'i

A‘ Iﬁ | * *
+5 (1 oW, )(a+a )(B+BY). W6
In order to find the inflection points for this semiclassical
energy, we derive with respect to the real and imaginary parts
of both @ and # and solve the system 8(H)/dx = 0 with x =
ag,or,Br,B1. The trivial solution is the ground state |0) /|0),
and we check for intersections with the remaining six solutions,
two of them do not intersect the ground state and the remaining
four do it at the semiclassical critical coupling parameter,

1
ASO — \/[w+ (N—q - 1) 1?] wr, (17

A
2r

(18)
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at which a second-order superradiant phase transition occurs
[2,3]. It is half the critical strength found for the case without
counterrotating terms, A, in Eq. (8), as expected from what
happens for the Dicke model in the classical limit result,
where accounting for counterrotating termg halves the critical
coupling found without the counterrotating terms [42].

D. Numerical analysis

In order to find the numerical ground state of the Hamilto-
nian in Eq. (1) we will follow a coherent state approach [43].
For this reason we will move to the frame defined by

W =#(3)D (f—fJ) £), (19

with the rotation around J, given as R,(¢) = €'#’ and the
displacement operator in the form D(B0) = ef0d'-#*0'a
with [0,8]1 =0, and the size-scaled coupling defined as
X =1//N;. In the new frame, the system is ruled by an
effective Hamiltonian,

FIG. 1. (Color online) (a) Entangled web concurrence and (b)
mean value of J, for the ground state of the model Hamiltonian
in Eq. (1) with five qubits, N, = 5, under off-resonant interaction
with the quantized field, w; = 0.75w. The qubit interaction, 7, and
field-ensemble coupling, A, are given in units of the qubit transition
frequency, w.
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FIG. 5. (Color online) Poincaré sections for phase space {r,¢} at
p(t) = 0 with r = 1 + j,/j and initial scaled energies (a) E /(wj) =
—0.99, (b) E/(wj) = —0.951 885, and (c) E/(wj) = —0.91. The
parameter values used here are: j =50, w=uw;, n=01lwy,
A = 1.25A89, These deliver a minimum scaled angular momentum
projection, {J,}/(wj) = —0.828 784, with associated scaled energy
E /(wj) = —0.951 885 in the quantum case.

the semiclassical critical coupling, A5€). Now, this classical
scaled energy corresponds to that of the quantum state with
the minimum scaled value of {J.)/(wj).

Figure 6 shows the Peres lattice [34] given by the scaled
angular momentum for the parameter set used in Fig. 5; note
how the minimum does not correspond to the scaled energy
value of —1 found for the Dicke model [35]. Such behavior
was confirmed numerically for different ensemble sizes and
system parameters. For example, for the parameters mentioned
above and varying the ensemble size, the quantum state that
gives the minimum value of (J;) has an energy that almost
varies linearly in the ensemble size, N,, as seen in Fig. 7. This
was also confirmed for a sampling of different parameter sets
slightly above the semiclassical critical coupling, A8,

IV. CONCLUSIONS

We studied the ground state of a finite ensemble of
interacting qubits driven by a quantum field. We found a
specific parameter region that delivers a maximally entangled
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FIG. 6. Peres lattice of the scaled quantum angular momentum
{J.}/(wj) for the parameters w = w/, n = O.lw, A = 1.2505C and
ensemble size N, = 100.

W state in the ground state of the ensemble. This parameter
region corresponds to the first of a finite series of quantum
phase transition in the ground state. As the ensemble size
increases, the area of this first nonvacuum ground state
decreases and, in the classical limit when the size of the
ensemble is infinite, becomes the critical parameter defining
the phase transition of the corresponding classical system.

In addition, while studying the classical analog of the model
to find the phase transition, we find a critical energy at which
there is a transition from order to disorder in the dynamics of
the system. We numerically studied the behavior of different
parameter sets and found that, in all cases studied, this critical
energy is related to the energy of the quantum state that
delivers the minimum value of (./,) for each parameter set. This
transition, which is related to an excited state, is interesting
because it occurs for values close to the ground state and not
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FIG. 7. (a) Energy and (b) scaled energy of the quantum state that
delivers a minimum scaled angular momentum projection (L) /(wi)
for the parameters w = wy, n = 0.1y, A = 1.2515 and ensemble
size N, € [5,100].
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