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A new lens model based on the gradient-index Luneburg
lens and composed of two oblate half spheroids of different
curvatures is presented. The spherically symmetric Luneburg
lens is modified to create continuous isoindicial contours
and to incorporate curvatures that are similar to those found
in a human lens. The imaging capabilities of the model and
the changes in the gradient index profile are tested for five
object distances, for a fixed geometry and for a fixed image
distance. The central refractive index decreases with decreas-
ing object distance. This indicates that in order to focus at
the same image distance as is required in the eye, a decrease
in refractive power is needed for rays from closer objects
that meet the lens surface at steeper angles compared to rays
from more distant objects. This ensures a highly focused
image with no spherical aberration. © 2015 Optical Society
of America
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The eye lens, by virtue of its biological nature and protein dis-
tributions, is an optically inhomogeneous lens with a gradient
refractive index (GRIN). A number of GRIN models have been
proposed in the past, the most famous of which is Maxwell’s
fish-eye [1]. This lens, however, is not found in any animal eye
and is limited in practical applications [2]. The Luneburg lens
[3] with a wider range of applications has a simpler mathemati-
cal description and has been proposed as a model for the eye
lens [4,5]. However, the spherical symmetry of the Luneburg
lens [4] is inapplicable to the human lens, which approximates
an oblate spheroid.

The eye lens is the dynamic component of the ocular system
that changes or accommodates its shape to correctly focus the
eye in response to visual demand. As the lens shape alters, there
will be an internal cellular redistribution that will cause a

change in the form of the GRIN profile [2]. Hence, for any
accommodating lens, there cannot be a single mathematical
expression to describe the GRIN. The original Luneburg lens
is a sphere with a GRIN that is free from spherical aberrations
[3,5]. The form of the GRIN changes for every pair of object
and image conjugate points and in this way is similar to the eye
lens [4].

It is possible to geometrically transform the original spheri-
cal Luneburg lens into a symmetrical oblate spheroid while
maintaining its aberration free property [6,7]. However, the hu-
man lens is not symmetrical and, taking this into consideration,
alternative GRIN models with asymmetric bi-spheroidal shapes
have been proposed [8,9]. In addition to asymmetries and min-
imizing aberrations, in order to have a realistic and applicable
model of the eye lens, its accommodating ability needs to be
taken into account so that image quality can be maintained for
a wide range of object distances.

In this Letter, we present a dynamic model of the human lens
constructed with a shape akin to that found in the eye using two
separate spheroidal hemispheres. The isoindicial contours and
their first-order derivatives are assumed to be continuous in the
equatorial plane. This condition creates a match in the GRINs of
both hemispheres to prevent any discontinuity of the ray paths.
The model allows for variable curvatures for the anterior and pos-
terior sections, but for the purposes of this Letter, the geometry is
fixed. We investigate the image formation capacity of such a lens
for distant sources comparing it with existing models. We show
that, based on the Luneburg lens theory, the model requires
modification of its GRIN distribution for each distance in order
to produce the appropriate image. This model will be referred to
as the Composite Modified Luneburg (CML) lens.

From Luneburg theory [3], the rays traverse an inhomo-
geneous medium of spherical symmetry and the ray paths are
described by the Eikonal equation which is given in terms of
the polar and radial coordinates as�
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where ψ describes the optical path of the rays and n�r� the
refractive index of the lens. The surfaces ψ � constant are
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associated with the optical wavefronts and Eq. (1) allows for
nonparaxial rays. Since the refractive index depends only on
the radial coordinates, this equation can be solved using sepa-
ration of variables. For an arbitrary ray in an inhomogeneous
medium the solution is given by

ψ � K θ�
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where K is the separation constant and is constant for any par-
ticular ray [5,10,11]. Rearranging this equation and applying
the theorem of Jacobi gives the following:
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where �r0; θi� are the coordinates of the point of ray entry into
the lens as shown in Fig. 1. Calculating the derivative of Eq. (3)
with respect to the radial coordinate yields

K � n�r�r sin φ; (4)

where sin φ � rdθ∕dr�1� �dθ∕dr�2r2�−1∕2 and the angle φ is
formed between the radial vector and the tangent to the ray
path (Fig. 1) [3]. This expression is known as the generalized
Snell’s law for inhomogeneous media and represents a family of
rays, each determined by the particular value of K . This value
can be obtained at the point of incidence of the Luneburg lens,
where K � n�r0�r0 sin α0 � n0r0 sin α0, with n0 the external
refractive index and α0 the angle that the ray makes with the
optic axis (Fig. 1).

By normalizing the system such that the radius is a unit
radius and the external refractive index �1, then 0 ≤ K ≤ 1.
After further calculations [3,5] Eq. (3) becomesZ
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where r	 is the minimum value of the radial position for each
ray determined by K as shown in Fig. 1. This equation indi-
cates that the only unknown quantity is the refractive index.
For any given pair of conjugate points and for each ray that
joins them, the refractive index has to be obtained from the
integral Eq. (5). Without loss of generality, the position of the
image point can be fixed, so that only a change in position of
the object point will result in a change in the GRIN distribu-
tion. Such a change can be compared to the process of accom-
modation in the human lens [2] and may serve as a suitable
model for the biological process. The change in the anterior
and posterior curvatures of the eye lens with accommodation
is also considered.

The index in the spherical Luneburg lens is described by a
function n�r� where r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2 � z2

p
and x, y and z are

Cartesian coordinates. Setting ρ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2

p
and assuming

symmetry around the z axis gives two forms of the equation
that can be used to obtain the desired spheroidal shape:�
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In these equations, s is a constant, the value of which can
compress or elongate the sphere along the y or z axis. To model
the eye lens, this constant will be determined by the fusion of
two spheroidal hemispheres of different curvature but the same
equatorial diameter [6–9].

The model is constructed by imposing the condition that the
GRINs and the axial derivatives of the anterior and posterior
hemispheres match at every point on the equatorial plane. For
this purpose, the refractive indices, na�r� for the anterior and
np�r� for the posterior hemisphere, must be of the form
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where nc is the refractive index at the center of the lens, and R is
the radius of the lens measured on the equatorial plane. The scal-
ing factor is sa;p � za;p∕R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2c − n2s

p
where za is the anterior vertex

and zp the posterior vertex. For na�r�, the variable z 0 is negative,
and for np�r�, the variable z 0 is positive. Figure 2 shows the con-
tinuous, bi-elliptical isoindicial contours in the sagittal plane.

The model uses shape parameters reported in the literature
[12], and the refractive index ranges from nc � 1.4181�
0.075 in the core to ns � 1.3709� 0.0039 at the edge of the
lens [2]. The age dependence of the geometric parameters is
estimated by the following equations [12]:

R � �0.0138��0.002� 	 Age� 8.7�∕2;
zp � 0.0074��0.002� 	 Age� 2.33;

za � 0.0049��0.001� 	 Age� 1.65: (8)

Fig. 1. Luneburg lens showing the geometric parameters of the ray
path.

Fig. 2. Geometry of the bi-spherical model showing the continuity
of the isoindicial lines at the equatorial plane.
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For a lens aged 35 years, the corresponding parameters are
R � 4.4005 mm, za � 1.8215 mm, and zp � 2.5890. The
curvatures of the anterior and posterior hemispheres are such
that the ratio between za and zp is 0.7035.

In order to investigate the imaging properties of this model,
we follow a procedure similar to that described in Ref. [6]
modified accordingly to fit the new geometry and the required
continuity conditions. The surround refractive index is 1.336,
and the surface refractive index ns is constant. The first case
investigated simulates a modification of the Luneburg model
using a constant ratio za∕zp applicable to a 35-year-old lens
[13]. In these simulations, the only parameter of the lens that
can be modified is the central refractive index nc , the param-
eters ns and za∕zp being fixed. Changes in the GRIN are in-
vestigated for a fixed image distance of 63.05 mm from the
posterior surface of the lens and for five distances from the
anterior surface: infinity, 200, 100, 50, and 25 cm.

Figure 3 shows the gradient index profiles for the five object
distances. It can be seen that there is a decrease in nc as the
object point moves closer to the anterior surface of the lens.

The variation in nc is 0.0033 between the case of an object at
infinity (for which nc , is 1.3998) to that of an object at 25 cm
(for which nc , is 1.3965). For a direct comparison, the GRIN
profiles corresponding to the five object distances are plotted
in Fig. 4.

A lower nc gives a lens with lower refractive power. It seems
counterintuitive to have a lower refractive power for objects
close to the lens compared to objects further from the lens.
In the human lens, focusing on near objects requires the lens
to increase its refractive power by increasing its curvature. This
action causes an expansion of the nuclear part of the lens but
does not alter the magnitude of its refractive index [14,15],
which is relatively constant over the nuclear region [2,13].
This contrasts with the decrease in nc for shorter object distan-
ces that applies to the CML lens. Unlike the biological lens that
alters its shape with accommodation, this lens has a fixed geom-
etry, and nc decreases because the angle α0 is more steeply
inclined the closer the object is to the lens (Fig. 1). Hence,
if the value of nc remained the same as for more distant objects,
the rays would refract more strongly and focus closer than the
set image distance of 63.05 mm.

In conclusion, we have introduced a new dynamic model of
the human lens, the Composite Modified Luneburg (CML)
lens. It is constructed with two Luneburg oblate spheroidal
hemispheres of different elliptical parameters but with continu-
ous isoindicial contours and continuous first-order derivatives
at the equatorial plane. Maintaining the same geometry, we in-
vestigated the changes in gradient refractive index (GRIN) that
occur when an object placed at different distances is imaged
onto a fixed plane simulating the retina. Our results show that
there is a redistribution of the GRIN with a central refractive
index that is reduced in order to focus the object as it gets
closer to the lens and indicates that for an accommodating lens,
there cannot be a single mathematical expression to describe
the GRIN.

Our model allows for changes in the lens shape and can be
used to investigate the effect of the GRIN on aberrations of the
lens. Using such a variety of lens models, it is possible to create a
schematic eye with a more-realistic GRIN lens and for different
shapes and ages to evaluate the image quality, extent, and types
of aberrations and the effects of corneal topography.

Fig. 3. Gradient refractive index (GRIN) profiles calculated for a
point object at different distances. The lens has the same ratio za∕zp
and surround refractive index�1.336. There is a reduction of nc as the
object gets closer to the lens.

Fig. 4. Direct comparison of the GRIN profiles calculated for the
different distances of the point object in Fig. 3. The lens has a fixed
ratio za∕zp.
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