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We analyze the diffraction field generated by coherent
illumination of a three-dimensional transmittance charac-
terized by a slit-shape curve. Generic features are obtained
using the Frenet–Serret equations, which allow a decompo-
sition of the optical field. The analysis is performed by
describing the influence of the curvature and torsion on
osculating, normal, and rectifying planes. We show that the
diffracted field has a decomposition in three optical fields
propagating along three optical axes that are mutually
perpendicular. The decomposition is in terms of the Pearcey
and Airy functions, and the generalized Airy function.
Experimental results are shown. © 2015 Optical Society of

America

OCIS codes: (050.1960) Diffraction theory; (050.5082) Phase space

in wave optics.
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The diffraction field of planar transmittances containing a slit-
shape curve generates caustic regions whose geometry can be
calculated from the curvature function of the slit geometry
[1], this optical field can be considered as a cylinder
perpendicular to the transmittance function, the caustic region
being the walls of the cylinder [2]. The caustic region separates
two regions with different physical properties. One of them has
a single-value phase function, while the other region has a
multi-value phase function, which implies phase dislocations
on the caustic region; consequently, different physical proper-
ties, such as entropy and vorticity, can be expected [3,4].
In addition, the walls of the cylinder present adiabatic features
in the phase function, which physically means that caustic re-
gions present no more wave behavior. Experimental evidence of
this can be found in a previous work [5]. In this way, a very
important topic to research is the establishment of the relation
between the geometry of the different kinds of caustic regions

with the transmittance function. The simplest case occurs when
the optical field emerges from a planar transmittance contain-
ing a slit-shape curve, which has changes only in the curvature
function [5–7]. In the present study, we go a step further and
analyze the optical field when the boundary condition is a
three-dimensional (3-D) slit-shape curve, i.e., the transmittance
curve has curvature and torsion. These two geometrical proper-
ties imply that the diffraction field presents a more complicated
structure.

The study is performed by describing the slit-shape curve
using a trihedral reference system, characterized by the Frenet–
Serret equations [8]. In this reference system, three mutually
perpendicular planes are established: the osculating, the nor-
mal, and the rectifying planes. That the diffraction field can be
separated as three optical fields, where each one has as a boun-
dary condition a slit transmittance on each one of the trihedral
planes, is inherited as a main consequence. To clarify previous
assertions, we call attention to the following previous result.
The diffraction fields associated with a transmittance contain-
ing a slit circular curve when it is illuminated with a plane wave
at normal incidence generate nondiffracting fields whose geom-
etry corresponds with a zero-order Bessel beam [9]. Modifying
the illumination angle with a tilt in the transmittance, the
diffraction field geometry changes dramatically, generating a
cusped caustic region [5], as is shown in Fig. 1.

The cylindrical structure is easily identified; the cylinder
basis is the cusp-shaped caustic region, and the multi-value
region is formed by the inner points bounded by the caustic.
This implies that, across the caustic region, the amplitude of the
optical field is discontinuous, which generates an entropy proc-
ess; more details concerning this behavior can be found in [10].
From the mathematical point of view, a differential transforma-
tion in the boundary condition generates optical fields that do
not preserve the differentiability, meaning that the diffraction
field depends strongly on the illumination configuration.
To describe the diffraction field, an accurate reference system
that takes the information of the geometric properties of the
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transmittance is necessary. This can be established describing
the 3-D curve in parametric form:

Ψ�s� � �ξ�s�; η�s�; ζ�s��; (1)

where s is the arc length of the curve. The local reference system
is identified using the Frenet–Serret equations:

T � dΨ�s�
d s

;

dT
d s

� ρN;

dB
d s

� −γN;

dN
d s

� −ρT� γB; (2)

where ρ and γ are the curvature and torsion of the curve, re-
spectively; T is the tangent vector; N is the normal vector; and
B � T × N is the bi-normal vector. These sets of vectors are
mutually perpendicular having unitary modulus; this induces
a local reference system known as the trihedral system [8].
From the set of vectors, three mutually orthogonal planes are
identified. The vectors T and N generate the osculating plane,
the T and B vectors generate the rectifying plane, and the vec-
tors N and B generate the normal plane. Indeed, the tangent
vector T defines the x-axis, the normal vector N defines the
y-axis, and the bi-normal vector B defines the z-axis, as is
sketched in Fig. 2. On the trihedral reference system, the
Frenet–Serret equations given by Eq. (2) acquire the form

dx
d s

� 1;
d 2x
d s2

� 0;
d 3x
d s3

� −ρ2; (3)

dy
d s

� 0;
d 2y
dy2

� ρ;
d 3y
d s3

� ρ 0; (4)

dz
d s

� 0;
d 2z
d s2

� 0;
d 3z
d s3

� ργ; (5)

where ρ 0 is the derivative of the curvature with respect to the arc
length. The curve solution on each plane is given as follows:

2y � ρx2; (6)

6z � ργx3; (7)

9ρz2 � 2γ2y3: (8)

The details of the results given by Eqs. (3)–(8) can be found
in [8].

Previous comments indicate that the 3-D transmittance
can be detached in three transmittances that are mutually
perpendicular. Equation (6) corresponds to the transmittance
on the osculating plane; it is slit-shaped like a parabolic curve
scaled by the curvature. The corresponding transmittance on a
rectifying plane, Eq. (7), is slit-shaped like a cubic curve scaled
by the product of curvature and torsion. The transmittance on
the normal plane, Eq. (8), is slit-shaped like a cusp curve. For
this decomposition in the three-dimensional boundary condi-
tion, the diffraction field can be described by the superposition
of three optical fields, as is described below. The study is per-
formed by illuminating the 3-D slit curve with a plane wave.
The wave vector k in the trihedral reference system has the
components k � jkj�cos α; cos β; cos χ�, where �α; β; χ� are
the angles between k and the corresponding axis �x; y; z�.
The diffraction field emerging from the osculating and rectify-
ing planes is

ϕxy �
ZZ

δ

�
y −

ρ

2
x2
�
exp�ikr cos α�

r
dxdy; (9)

ϕxz �
ZZ

δ

�
z −

ργ

6
x3
�
exp�ikr cos β�

r
dzdx; (10)

where r is the distance of propagation of the optical field, and δ
is the Dirac delta function. We use this function because it
make sense when its argument is zero, recovering Eqs. (6) and
(7). Equation (9) corresponds to the Pearcey function, and it
generates a cusped caustic. Equation (10) corresponds to the
Airy function, and it generates a fold caustic [11]. In Fig. 3, we
show the experimental results for these two cases. The dif-
fracted field corresponding to a slit described by Eq. (8) is

ϕyz �
ZZ

δ

�
z2 −

2γ2

9ρ
y3
�
exp�ikr cos χ�

r
dzdy

�
Z

exp
iπ
λx

�y2 � ay3� exp
�
−i2π

yy0
λx

�

× cos
�
2π

a1∕2y3∕2z0
λx

�
dy; (11)

where a � 2γ2

9ρ . Grouping terms and expanding the cosine term
in the power series, the amplitude function acquires the form of
a series of generalized Airy functions Ai�y; n�:

Fig. 1. (a) Transmittance characterized by a circular slit.
(b) Diffraction field when the illumination is perpendicular to the
transmittance, generating a zero-order Bessel beam. (c) Diffraction
field when the incident angle is approximately 30°, generating a
cusp-shaped caustic diffraction field.
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Fig. 2. Description of the 3-D slit curve using the trihedral reference
system.
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ϕyz �
X∞
n�0

Cn�z�Ai�y; n�: (12)

The convergence of the sum is not an easy mathematical prob-
lem; for this reason, we analyze the integral, keeping in mind a
geometric point of view and using a geometrical theory of dif-
fraction [12]. It must be noted that transmittance geometry can
be considered as the joint of two curves, sharing a common
point and generating the cusped shape. We interpret the optical
field as the interference between two optical fields emerging
from each branch. The description of the geometry of the in-
terference fringes is obtained, taking as a reference the line OS,
which is tangent to each branch in the cusped point, as is
sketched in Fig. 4. As a consequence of the geometric theory
of diffraction, the k-vector must be normal at each point on the
slit curve [11,13]. This means that, in an arbitrary point on
region 1 sketched in Fig. 5, only two linear trajectories are in-
tersected; consequently, the diffraction field can be approxi-
mated locally as

ϕyz �
ZZ

δ�z2 − ay3� exp�ikr cos χ�
r

dzdy;

≈ A exp�ik1 · r� � A exp�ik2 · r�: (13)

The irradiance takes the form

I�x; y; z� � 2jAj2�1� cos��k1 − k2� · r��: (14)

The global structure of the interference fringes depends on
the Δk � k1 − k2 vector, which takes the information of the
curvature of the transmittance function. The geometry of the
interference fringes can be deduced from the argument of
the cosine term. Without loss of generality, we can consider
only the regions of maximum interference given by

�k1 − k2� · r � 2mπ; (15)

where m is an integer that represents the interference order. The
fringe geometry is obtained by plotting the Δk vector on the

plane and joining all the points by a continuous curve as shown
in Fig. 4. Counterpropagating the linear trajectories toward
region 2, we predict the focusing region, which is generated
by the envelope of all normal trajectories to each branch, as
is sketched in Fig. 5. The superposition of the fringe geometry
sketched in Fig. 4 with the geometry of the focusing region
sketched in Fig. 5 justifies the experimental deltoid shape of
the optical field shown in Fig. 6. In the common point of the
transmittance, bifurcation effects are generated, which can be
expected because, at this common point, the wave vector k has
two possible directions; this occurs only in the neighborhood of
the cusped point of the transmittance.

To explain the bifurcation effects, we use the fact that the
irradiance function Eq. (14) satisfies the nonlinear partial
differential equation:

∂2I
∂a2

∂2I
∂b2

−

�
∂2I
∂a∂b

�
2

� 0; (16)

where a � Δkx and b � Δky. Equation (16) is the condition to
generate an envelope curve for all points of the same phase,
generating an interference fringe. Some generic features can
be deduced, noting that the quadratic term is always positive;

Fig. 3. Experimental results. (a), (b) Slit parabolic-shaped transmit-
tance and its corresponding diffraction field. (c), (d) Slit cubic-shaped
transmittance and its corresponding diffraction field. The transmittan-
ces are contained in a square of 0.5 cm per side.
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Fig. 4. Sketch to describe the diffracted field generated by the trans-
mittance cusp-shaped slit. P and Q are two arbitrary points showing
the k1 − k2 vector to describe the geometry of the interference fringe.
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Fig. 5. Generation of the focusing region for a cusp-shaped slit.
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consequently, the terms ∂2I
∂a2 and

∂2I
∂b2 must have the same sign.

That is, both are negative or both are positive. This behavior
has profound implications. In particular, the curvature function
of the interference fringes must be a monotonic function with-
out inflection points. When this requirement is not fulfilled,
the optical field generates bifurcation effects. A formal analysis
can be obtained from the stability of the irradiance function.
Solving the differential equation Eq. (16) by means of separa-
tion of variables I�a; b� � ξ�a�η�b�, we generate the system of
ordinary differential equations:

ξ
d 2ξ

da2
� c

�
dξ
da

�
2

; cη
d 2η

db2
�

�
dη
db

�
2

; (17)

where c is a coupling constant. The stability of the irradiance
function is obtained by linearization of the system of Eq. (17).
For this purpose, we use the following relations:

dξ
da

� σξ;
dη
db

� τη; (18)

where σ and τ are constants. The system of differential equa-
tions, given by Eq. (17), acquires the form

d 2ξ

da2
� c1ξ;

d 2η

db2
� c2η; (19)

where the ci constants must be positive in order for the inter-
ference to have real and positive values. The eigenvalues of the
system Eq. (19) have two real values with opposite signs. As a
consequence, the origin given by a � 0 and b � 0 is a repulsor
point [14], which explains the bifurcation effects around the
cusped point.

In this Letter, we presented the decomposition of the dif-
fraction field generated by the illumination of a 3-D slit trans-
mittance. The study was performed using the Frenet–Serret
equations, which allowed us to obtain three transmittances
that were mutually perpendicular. Each transmittance takes
the information of the curvature and torsion of the 3-D trans-
mittance. The transmittance function on the osculating plane
generates an optical field whose amplitude is given by the
Pearcey function, which generates a cusped caustic. On the
normal plane, a cubic transmittance is generated, and the dif-
fraction field corresponds with an Airy function, generating a
fold caustic. Finally, on the rectifying plane, a transmittance
kind cusped caustic slit is generated, and the diffraction field
is a superposition of generalized Airy functions, whose geom-
etry resembles a hyperbolic shape. This optical field is bounded
by a curved focusing region generating a global shape deltoid.
We also note that the complete diffraction field can be inter-
preted as a superposition of three optical fields, each propagat-
ing along one of three mutually perpendicular optical axes in
the trihedral reference system. This study paves the way to in-
corporate other properties, such as polarization. In addition,
it can be transferred to other physical fields, for example, in
the generation of 1-D plasmon fields [15], which can be ob-
tained when the slit curve is replaced by a curved metal strip,
being the curvature and torsion mechanism that allows the cou-
pling between the illumination field and the plasmon field.
This analysis will be presented in a forthcoming paper.
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Fig. 6. (a) Cusp-shaped slit transmittance. (b)–(d) show the corre-
sponding diffraction field detected on increasing propagation planes.
The bifurcation effects are evident around the contact point. The
transmittance is contained in a square of 0.5 cm per side.
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