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Abstract
In this work we assume that we have two given optical media with constant refraction indexes,
which are separated by an arbitrary refracting surface. In one of the optical media we place a
point light source at an arbitrary position. The aim of this work is to use a particular complete
integral of the eikonal equation and Huygens’ principle to obtain the refraction and reflection
laws. We remark that this complete integral associates a new point light source with each light
ray that arrives at the refracting surface. This means that by using only this complete integral it is
not possible to determine the direction of propagation of the refracted light rays; the direction of
propagation is obtained by imposing two extra conditions on the complete integral which are
equivalent to Huygens’ principle (in two dimensions, only one condition is needed). Finally, we
establish the connection between the complete integral used here and that derived by using the
k-function procedure introduced by Stavroudis, which works with plane wavefronts instead of
spherical ones.

Keywords: geometric optics, refraction, reflection

(Some figures may appear in colour only in the online journal)

1. Introduction

In this work we assume that we have two given optical media
with constant refraction indexes n1 and n2, which are sepa-
rated by an arbitrary refracting surface. In the optical medium
with refraction index n1 we place a point light source at an
arbitrary position. From a geometrical optics point of view,
the emitted spherical wave is characterized by a family of

light rays, or equivalently by a train of spherical wavefronts,
such that when they arrive at the refracting surface they
experience a change in the direction of propagation. Because
of its practical applications [1–8], the main problem in geo-
metrical optics is to compute the refracted light rays, wave-
fronts, and caustic. Recently we solved this
problem [9, 11, 21] by using the procedure of the k-function
introduced by Stavroudis [2] and generalized by Shealy and
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Hoffnagle [12]. In the k-function procedure the refraction law
is used explicitly to construct a complete integral of the
eikonal equation in the optical medium with refraction index
n2; then, by imposing two extra conditions on it, the refracted
wavefronts and light rays are computed. The aim of this work
is to show that it is not necessary to use the refraction law
explicitly because the refraction law is equivalent to the two
extra conditions imposed on the complete integral of the
eikonal equation. To this end, we use a new complete integral
of the eikonal equation in the medium with refraction index
n2, which, with a minor change in the notation, is equivalent
to that constructed in [9]. The refraction and reflection laws
are obtained by computing the envelope of the wavefronts
associated with this complete integral. The envelope condi-
tions are equivalent to Huygens’ principle. More precisely,
the two extra conditions on the complete integral provide two
directions of propagation, one corresponding to the refraction
law and the other to the reflection law. Furthermore, we
remark on the physical meaning associated with the two
complete integrals. The general results are applied to a par-
ticular example.

2. The refraction and reflection laws

We assume that the three-dimensional free space is filled out
with two different optical media with refraction indexes n1
and n2, which are separated by an arbitrary surface locally
given by = + +x y x y f x yr x y z( , ) ˆ ˆ ( , ) ˆ . In the optical med-
ium with refraction index n1 we place a point light source at s.
The optical path length (OPL), Φ, from the point source, s, to
an arbitrary point, = + +X Y ZX x y zˆ ˆ ˆ , in the optical med-
ium with refraction index n2 is equal to

Φ = − + −x y n x y n x yX r s X r( , , ) ( , ) ( , ) . (1)1 2

Observe that for fixed values of x and y equation (1) is a
solution to the eikonal equation in the optical medium with
refraction index n2. This means that Φ x yX( , , ) is a complete
integral of the eikonal equation [13]. To see the physical
meaning associated with this complete integral, we compute
its associated wavefronts, which are given by all the points X
such that Φ = x yX( , , ) , that is,

γ− = − −
x y

n
x yX r r s( , ) ( , ) , (2)

2

where  is a real constant and

γ ≡
n

n
. (3)1

2

Observe that for fixed values of x, y, and  , equation (2)
describes a sphere with its center at the point of the refracting
surface, x yr( , ), and radius γ− − x yr s| ( , ) |

n2
. This means

that with each light ray emitted by the point light source at the
moment it arrives at the refracting surface it transforms into a
new point light source such that its associated spherical
wavefronts are given by (2) (see figure 1). In other words,
each ray that is emitted by the point light source at the

moment it arrives at the refracting surface has the possibility
of taking any direction of propagation. Therefore, by using
only the information of the complete integral (1) it is not
possible to determine the direction of propagation of the
refracted light ray. To obtain such a direction we now use
Huygens’ principle. That is, we assume that the refracted
wavefront train is given by the envelope of the wavefronts
(2). By definition, the envelope [14, 15] is given by all the
points X that satisfy (2) and the two extra conditions on Φ:

Φ γ= − − =( )n R I rˆ ˆ · 0, (4)x x2

Φ γ= − − =( )n R I rˆ ˆ · 0, (5)y y2

where Φx, Φy, rx, and rx denote the partial derivatives of Φ and
r with respect to x and y respectively, and

= −
−

I
r s
r s

ˆ , (6)

= −
−

R
X r
X r

ˆ . (7)

That is, Î gives the direction of the incident light ray, and R̂
gives the direction of the refracted light ray. If N̂ denotes the
unit vector to the refracting surface then =N rˆ · 0x and

=N rˆ · 0y because rx and ry are tangent vectors to the

refracting surface. Therefore, in general rx, ry, and N̂ are
linearly independent vectors. This means that any vector in

Figure 1. A schematic depiction of two optical media with refraction
indexes n1 and n2 separated by an arbitrary interface locally given by

=z f x y( , ). In the optical medium with refraction index n1 we place
a point light source at an arbitrary position s; r denotes the position
of a point on the interface, N̂ denotes the normal vector to the
refracting surface, Î gives the direction of the incident light ray, and
R̂ is the direction of propagation of the refracted light ray, which is
determined later. The complete integral (1) associates a new point
light source with each light ray that arrives at the refracting surface
in such a way that the associated wavefronts of these new point light
sources are given by the wavefronts of this complete integral. That
is, they are given by equation (2) and are spheres.
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Figure 2. (a) The emitted light rays, the interface, and the refracted light rays. (b) The emitted light rays, the interface, and the part of the
spherical wavefronts, given by equation (21) with = 2 cm, that give rise to the refracted wavefront. (c) The superposition of (a) and (b).
(d) The superposition of (c) and the envelope or refracted wavefront given by (26) with = 2 cm. (e) As in (d), but now we take

= + ( 2 0.5) cm. (f) Superposition of (d) and (e).

Figure 3. (a) The emitted light rays, the interface, and the reflected light rays. (b) The emitted light rays, the interface, and the part of the
spherical wavefronts, given by equation (22) with = 2 cm, that give rise to the reflected wavefront. (c) The superposition of (a) and (b).
(d) The superposition of (c) and the envelope or reflected wavefront given by (28) with = 2 cm. (e) As in (d), but now we take

= + ( 2 0.5) cm. (f) Superposition of (d) and (e).
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the optical medium with refraction index n2 can be written as
a linear combination. From equations (4) and (5) we conclude
that

γ Ω− =R I Nˆ ˆ ˆ , (8)

where Ω is a function determined from the condition
=R Rˆ · ˆ 1. A direct computation shows that this condition

provides two solutions for Ω given by

Ω γ γ= − ± − −± ⎡
⎣⎢

⎤
⎦⎥( ) ( )I N I Nˆ · ˆ 1 1 ˆ · ˆ . (9)( ) 2 2

Therefore, we conclude that the conditions (4) and (5) on
the complete integral (1) of the eikonal equation determine
two directions of propagation, which correspond to the
refraction and reflection laws in vectorial form.

The refraction law is given by equation (8) with Ω given
by equation (9) with the plus sign. That is, by

γ Ω= +R I Nˆ ˆ ˆ , (10)

Ω γ γ≡ − + − −⎡
⎣⎢

⎤
⎦⎥( ) ( )I N I Nˆ · ˆ 1 1 ˆ · ˆ . (11)2 2

Observe that when =n n1 2, then γ = 1, Ω = 0, and =R Iˆ ˆ ,
which is a well-known result.

The reflection law is given by equation (8) with Ω given
by equation (9) with the minus sign and taking =n n1 2. That
is, by

= − ( )R I I N Nˆ ˆ 2 ˆ · ˆ ˆ . (12)

For alternative derivations of the refraction and reflection
laws see Stavroudis, Tkaczyk, and Bhattacharjee [16–18].

Remember that the envelope of the wavefronts (2) is
given by all the points X that satisfy equations (2), (4), and

(5). From the for going results, observe that equations (4) and
(5) determine two directions of propagation: one corresponds
to the direction of the refracted light rays given by
equation (10), and the other corresponds to the direction of
the reflected light rays given by equation (12). Therefore, the
envelope of the wavefronts (2) has two branches, one corre-
sponding to the refracted wavefronts and the other to the
reflected wavefronts. By using equations (2), (7), (10), and
(12) a direct computation shows that the refracted wavefronts
are given by

γ γ Ω= + − − +⎛
⎝⎜

⎞
⎠⎟

⎡⎣ ⎤⎦
n

X r r s I Nˆ ˆ , (13)
2

and the reflected wavefronts by

= + − − −⎛
⎝⎜

⎞
⎠⎟

⎡⎣ ⎤⎦( )
n

X r r s I I N Nˆ 2 ˆ · ˆ ˆ . (14)
1

These results were obtained in the literature [7–9, 12] by
using the k-function procedure and the reflection and refrac-
tion laws. That is, the complete integral (1) was rewritten in
the following form [9]:

Φ = +( ) ( )x y n kX X R, , · ˆ , (15)2

where k is known as the k-function and is given by

= − −( ) ( )k x y n nr s r R, · ˆ . (16)1 2

Then, depending on the case, R̂ was computed by using
explicitly the refraction or reflection laws; and finally, the two
extra conditions (4) and (5) were imposed. From the results
obtained here we conclude that it is not necessary to use
explicitly the refraction or reflection laws to compute the
refracted or reflected wavefronts because they are equivalent
to the two extra conditions (4) and (5) on the complete
integral Φ given by equation (1).

Before closing this section it is important to remark that
the envelope of the wavefronts (2) in the optical medium with
refraction index n2 gives the evolution of the refracted
wavefronts and is given by equation (13). In the optical
medium with refraction index n1, equation (2) reduces to

− = − −
x y

n
x yX r r s( , ) ( , ) , (17)

1

and the envelope of these wavefronts is given by
equation (14), which gives the evolution of the reflected
wavefronts.

3. An example

To clarify the ideas and results presented in this work, we
work out explicitly the case when the interface is a plane and
the point light source is placed on the z axis. That is,

= +x yr x yˆ ˆ , (18)

= −ss ẑ. (19)

For this case, the complete integral (1) is given by

Figure 4. The complete integral (15) associates a new point light
source with each light ray that arrives at the refracting surface in
such a way that the associated wavefronts of these new point light
sources are given by the wavefronts of this complete integral. That
is, they are given by + = n kX R( · ˆ )2 and are planes.
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Φ = + +

+ − + − +

x y n x y s

n X x Y y Z

X( , , )

( ) ( ) , (20)

1
2 2 2

2
2 2 2

and its associated wavefronts, (2) in the optical medium with
refraction index n2, are given by

γ− + − + = − + +⎡
⎣⎢

⎤
⎦⎥X x Y y Z

n
x y s( ) ( ) ,(21)2 2 2

2

2 2 2
2

which for fixed values of x, y, and s is a family of spheres with
the center at the point (x, y, 0) of the plane interface and radius

γ− + + n x y s2
2 2 2 . Similarly, its associated wave-

fronts, (17) in the optical medium with refraction index n1, are
given by

− + − + = − + +⎡
⎣⎢

⎤
⎦⎥X x Y y Z

n
x y s( ) ( ) , (22)2 2 2

1

2 2 2
2

which also are spheres with the center at the points (x, y, 0)

and radius − + + n x y s1
2 2 2 . Observe that for given

values of  , n1, and n2, with n1, different from n2, the radii of
the spheres (21) and (22) are different because of the differ-
ence in the indexes of refraction.

In this example,

= + +

+ +

x y s

x y s
I

x y zˆ ˆ ˆ
, (23)

2 2 2

=N ẑ. (24)

Using these results in equation (11), a direct computation
shows that

Ω
γ γ

=
− + − + +

+ +

( )( )s x y s

x y s

1
. (25)

2 2 2 2

2 2 2

Therefore, using equations (23), (24), and (25) in
equation (13) we find that in this case the physical branch of
the envelope of the wavefronts (21) is given by

γ γ

γ

= +
+ +

+ +
+ +

+
− + +

+ +

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

( )( )

l

x y s
x

l

x y s
y

l x y s

x y s

X x y

z

1 1

1
. (26)

2 2 2 2 2 2

2 2 2 2

2 2 2

γ= − + +
l

n
x y s (27)

2

2 2 2

That is, this equation describes the evolution of the refracted
wavefronts. In a similar manner, we find that the physical
branch of the envelope associated with the wavefronts (22) is
given by

= +
+ +

+ +
+ +

−
+ +

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

l

x y s
x

l

x y s
y

l s

x y s

X x y

z

1
˜

1
˜

˜
, (28)

2 2 2 2 2 2

2 2 2

= − + +
l

n
x y s˜ . (29)

1

2 2 2

This equation describes the evolution of the reflected
wavefronts.

To illustrate the graphic results for this example we
consider =s 1 cm, =n 11 , and =n 1.582 . Furthermore, we
present the plots on the plane =y 0 because of the symmetry
about the z axis. The results are presented in figures 2 and 3
for refraction and reflection respectively.

4. Conclusions

Observe that the complete integrals (1) and (15) are equiva-
lent in the sense that they give the same OPL. The only
difference is in their associated wavefronts. As was remarked
earlier, the wavefronts associated with (1) are spheres,
whereas the wavefronts associated with (15) are given by

+ = n kX R( · ˆ )2 and are planes with normal vector R̂.
This means that each ray that is emitted by the point light
source in the direction Î at the moment it reaches the
refracting surface at the point x yr( , ) unfolds into a sphere of
light rays; that is, this point is a new point light source and
this complete integral associates a train of plane wavefronts
with each light ray emitted by the new point light source (see
figure 4).

We finish this work with the following remarks:
⋄ To obtain equation (1) we assumed that the point light

source is placed at s and that the observer is placed where the
OPL is evaluated, at X. When the optical media are such that
the reciprocity principle holds [19], then equation (1) also
describes the OPL from a point light source placed at X to an
arbitrary point, s, in the optical medium with refraction index
n1. The wavefronts associated with this new problem are also
given by equation (2), but now in that equation X is fixed and
s is the place where the OPL is evaluated. It is important to
point out that this construction has been used to compute the
image of an extended object under reflection and
refraction [21, 20].

⋄ The results obtained by Shealy and Hoffnagle [12] for a
plane wavefront are obtained from equations (13) and (14) by
replacing the position of the point light source s by a vector r0

that specifies the intersection between the incident light ray
and a plane of reference from which the OPL is measured. For
example, if the normal vector of the incident plane wavefront
is ẑ then s can be replaced by = +xx yyr ˆ ˆ0 . For this particular
case, all the relevant objects such as R̂ and Ω have simple
expressions (in reference [22] we have worked out all the
details for refraction).
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⋄ The total internal reflection phenomenon happens when
an emitted light ray strikes the refracting surface at an angle
larger than a particular critical angle, θc, with respect to the
normal to the surface. If >n n1 2 and the incident angle is
greater than θc, the light ray cannot pass through and is
entirely reflected. From equation (11) we see that the critical
angle is determined from the following condition:

γ θ− − = ⇔ =[ ( ) ] n

n
I N1 1 ˆ · ˆ 0, sin . (30)c

2 2 2

1

A natural and important question is, What happens to the
spherical wavefronts (2), (17) and their respective envelope
when the total internal reflection phenomenon appears? A
partial answer to this question is given in [23]. However, we
believe this question deserves to be considered in the future
not only for the spherical wavefronts but also for the plane
wavefronts associated with the complete integral (15).
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