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Abstract: In this work we demonstrate optical trapping and manipulation of 
microparticles suspended in water due to laser-induced convection currents. 
Convection currents are generated due to laser light absorption in an 
hydrogenated amorphous silicon (a:Si-H) thin film. The particles are 
dragged towards the beam's center by the convection currents (Stokes drag 
force) allowing trapping with powers as low as 0.8 mW. However, for 
powers >3 mW trapped particles form a ring around the beam due to two 
competing forces: Stokes drag and thermo-photophoretic forces. 
Additionally, we show that dynamic beam shaping can be used to trap and 
manipulate multiple particles by photophotophoresis without the need of 
lithographically created resistive heaters. 

©2015 Optical Society of America 

OCIS codes: (350.4855) Optical tweezers or optical manipulation; (120.6810) Thermal effects; 
(140.3300) Laser beam shaping. 
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1. Introduction 

The manipulation of single cells and large biomolecules is a requirement of several medical 
and biological techniques from in vitro fertilization to genetic engineering. Nowadays, several 
techniques and devices for micromanipulation have been implemented to supplement the 
traditional approaches using micropipettes: optical tweezers [1] offer single particle 
manipulation but limited capacity to simultaneously trap large number of particles due to the 
strong focusing requirement; on the other hand dielectrophoresis [2] allows massive 
manipulation but lacks spatial resolution to manipulate individual particles. Several 
approaches have been proposed that combine both high-spatial selectivity and high 
throughput at the same time including optodielectrophoresis [3], spatial patterning of 
plasmonic [4], optofluidic [5], structured light landscapes [6, 7] among others. Recent works 
have shown that individual and collective trapping of large particles (hundreds of μm's in 
diameter) can be achieved by laser-induced convective flow using an absorbing thin film [8], 
resistive heating devices [9] or more complicated devices such as cantilevers [10]. These 
approaches are quite attractive because particles are captured over long ranges by the 
convection currents allowing, for example, concentration of DNA [11, 12] and direct 
assemble of nanoparticles [13]. In addition, free surfaces in liquid subject to thermal gradients 
may drive fluid motion due to the temperature-dependent surface tension. This effect is 
known as thermocapillary force or the thermal Marangoni effect [14]. Marangoni convection 
can be used to drive the motion of gas bubbles in liquids [15], liquid droplets in air [16] or 
thin films of fluids [17]. The other mechanism of convection is the Rayleigh-Bénard 
convection (RBC) which is the buoyancy-driven flow of a fluid heated from the lower 
substrate and cooled from the above one. Such flows result from the development of the 
convective instability if the static vertical temperature gradient (the gradient that would be 
present in a motionless fluid under the same conditions) is large enough [18]. 

In this work, we exploit laser-induced convection currents to trap and manipulate silica 
microparticles, using power laser of up to 20 mW in order to avoid the formation of vapor 
bubbles as in previous reports [15]. In addition, interplay between convection currents and 
photophoresis lead to the formation of ring trapping zone around the beam. Finally, beam 
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shaping by means of a Spatial Light Modulator (SLM) is used to convert a Gaussian beam 
into dynamic light rings that can efficiently employed to trap and manipulate in real time a 
large number of microparticles. Numerical simulations support qualitatively well our 
experimental findings. The interplay of convection currents and photophoresis has been 
studied before produced by surface plasmon polariton excitation for large-scale ordering and 
trapping of colloidal aggregations [19] and by absorption of light in liquids for DNA 
concentration [11,12]. Although similar results were obtained, important differences are 
highlighted here that allow real-time manipulation of a large number of microparticles with 
relatively low power. We achieve this through beam shaping the light used and demonstrate 
that the pattern of the force can be controlled by changing the light pattern, a result which is 
not immediately obvious due to the convection currents created and one which has not been 
reported before. 

2. Laser-induced convection current 

The device employed consists of a colloidal suspension sandwiched between two glass plates 
(separated by ~100 μm). On one of the glass plates a thin film of amorphous silicon (a-Si:H) 
is deposited acting as the heating substrate. The absorption coefficient of the a-Si:H is very 
high (αaSi~2.77x104 cm−1 at λ = 532 nm) and therefore it is expected that a temperature 
gradient is created on the film and on the adjacent liquid. This temperature gradient drives 
convective flows, dragging the dissolved particles in water, and thus long-range capture of 
microparticles around the beam spot may be possible. In order to probe this assertion, 
numerical simulations were performed using finite element method (COMSOL) to solve the 
heat transfer and Navier-Stokes equations using the configuration shown in Fig. 1(a). 
Numerical results shows that temperature can reach up 100°C, so many parameters become 
temperature-dependent as shown in Table 1. Initial conditions assume a room temperature of 
293.15 K, atmospheric pressure (1x105 Pa) and an initial motionless fluid. 

Table 1. Material properties of water and amorphous silicon [20–22] 

Material 
k  

W/mK 

ρ  
kg/m3 

p
c  

J/kgK 

α ( λ  = 
532nm) 

1/m 

Water −0.87 + 9x10−3T-
1.6x10−5 T2 + 8x10−9 T3 

838.47 + 1.4T-3x10−3 
T2 + 3.7x10−7 T3 

1.2x104-80.41T + 0.31T2-
5.3x10−4 T3 + 3.6x10−7 T4 

3.5413x10−2 

a-Si:H 1.5 2330 992 2.77x106 

Light absorption by the amorphous silicon produces a temperature gradient ∇T and then 
dissipative heating from a-Si: H, heats the water up according to the heat transfer equation; 

 ( ) .pc u T k T Qρ ⋅∇ = ∇ ⋅ ∇ +  (1) 

In this equation steady-state condition is assumed, in addition, viscous heating and pressure 
work are ignored. Here ρ is the water density, cp is its heat capacity, u is the fluid’s field 
velocity, k is the thermal conductivity and Q = αI is the heat source (α is the absorption 
coefficient and I is the optical intensity. The water's absorption coefficient is quite small 
compared to the a-Si:H one, so amorphous silicon acts as the only heat source. 

The intensity distribution of the Gaussian beam inside the a-Si:H is given by 

 
( ) ( )( )

2

2 2
0

2 2
, exp exp

( )

0.63

aSi net aSi water

net air glass glass water water aSi

P r
I r z T z l

w z z w

T T T T

α
π

− − −

 
= + − +  

= ≈
 (2) 

where Tnet is the net transmission which takes into account all Fresnel losses at the air-glass, 
(Tair-glass), glass-water (Tglass-water) and water-a-Si:H (Twater-aSi) interfaces, respectively. By 
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taking a refractive index of n = 3 for the a-Si:H at λ = 532 nm [23–25], a total transmission of 
~63% is found. lwater is the thickness of the water film, P is the beam power, and w(z) is the 

beam radius defined as ( )( ) ( )222 2 2
0 0 0( )w z w z z wλ π = 1+ +  

, where 0w  = 5 μm is the beam 

waist at the distance 0z  = −95 μm i.e close to the a:Si-H film in accordance with the 
experiment. Figure 1(b) shows a typical temperature profile obtained by solving Eq. (1) with a 
heat source produced by a Gaussian beam, Eq. (2), using P = 11 mW. At this power value, the 
water temperature around the focal point reaches the boiling point (~100°C) and so the 
formation of vapor bubbles is possible, as reported below. Note that the temperature inside the 
semiconducting film is higher (~120°C) than the boiling temperature. Note that due to heat 
diffusion, the region above the ambient temperature is larger than the beam spot. According to 
Eq. (1), the gradient temperature sets in motion the fluid at a velocity u, and since the water 
properties are temperature dependent, the appearance of buoyancy force and the creation of 
convection flows is expected. The Navier-Stokes equations describe how the velocity, 
pressure, temperature, and density of a moving fluid are coupled. 
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Fig. 1. a) Schematic of the model. The z = 0 plane is placed at the glass-water interface and the 
beam waist is placed at a distance z0 = −95 μm. The dashed line represents the thermal gradient 
produced by heating of the amorphous silicon film. b) Temperature obtained from Eq. (1) 
when a laser beam is focused on a thin absorbing film. See text for details; c) Typical velocity 
profile of the flow inside the water cell for the first 40 μm. The total length cell is 200 μm. The 
laser is focused at the center of the lower interface. The liquid moves upwards and then moves 
along the upper surface and the moves downwards at the edges and back towards the centre 
along the lower surface. Around ± 10 μm a loop is created as indicated by the arrows. 

The Navier-Stokes equations for an incompressible flow are 

 ( ) ( )( ) ,
T

u u pI u u Fρ μ ⋅∇ = ∇ ⋅ − + ∇ + ∇ +
 

 (3a) 

 0,uρ∇ ⋅ =  (3b) 

where p is the pressure and F is a volumetric force. As volumetric force we used the 
buoyancy force ( )0F g ρ ρ= − −  responsible for the convection currents, with ρ0 = 998.3 

kg/m3 the water density at room temperature and ρ is the water density at the temperature T. 
Figure 1(c) shows the field velocity vector inside the liquid cell. Here only the first 40 μm 
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around the focal point are shown although the total length of the cell is 200 μm. The 
calculated temperature inside the water scales linearly with laser power, as expected, 
according to the expression T(P) = 20°C + (7.11°C/mW)P where P is the laser power in mW. 
Upper limit temperature is the water’s boiling temperature (100°C) where the formation of 
bubbles is observed. This agrees with well with experiment. Depending on the applications, 
the peak temperature can be conveniently chosen to manipulate biological samples (<40°C to 
avoid damage) or inorganic particles where the upper limit is boiling of water. Note that the 
convective currents are directed upwards just above the hottest spot and then reaches the 
upper surface. The flow moves parallel to the upper substrate away from the center and 
directs towards the vertical walls (not shown) while at the lower substrate it moves parallel to 
the substrate towards the hot spot. According to Fig. 1(c), velocities of up to 160 μm/s are 
obtained near the beam spot, which agree quite well with experimental measurements. 
Around ± 10 μm, a circulating zone is created more or less at middle of the cell. According to 
our numerical results, particles suspended in water will be dragged from regions far away 
from the laser beam and collected around it. In order to verify our results, a set of experiments 
were carried out and described below. The convective flow is neither Marangoni nor Rayleigh 
since no free surface is presented or the upper or lower substrate are cooled or heated 
uniformly. In addition, Rayleigh convection arises from an instability in a channel with a 
uniformly heated bottom surface when the Rayleigh number, Ra = gΘΔTd3/(νκ) exceeds a 
critical value of 1700 [26]. Here g is the gravity constant, d (beam diameter ~10 μm) is the 
characteristic length of the system, Θ (2.1x10−4 /°C [26]) is the thermal expansion coefficient, 
ν is the kinematic viscosity (0.001 cm2/s and κ is the thermal diffusivity (1x10−3 /°C [27]). 
Such a system is quiescent until ∇T across the entire fluid cell is large enough to cause the 
instability. Assuming the extreme condition of ∇T = 100°C then Ra<<1, i.e in principle, the 
buoyancy is much smaller than viscosity and heat diffusion dissipation. 

2. Trapping and manipulation experiments 

In order to perform the experiments we prepare a cell containing a colloidal solution of 2.5 
μm diameter microparticles immersed in water and sandwiched between two glass coverslips 
separated by 100 µm thick plastic spacers. In one of the coverslips, 1 µm thick a-Si:H film 
was deposited. In order to create convection currents, a CW frequency doubled (Klastech, λ = 
532 nm, 1W) Nd:YAG laser was used to illuminate the film. The laser's power is controlled 
with a variable attenuator consisting of a λ/2 waveplate and a polarized cube beamsplitter. 
The laser beam is spatially filtered, collimated and directed towards a phase-only SLM 
(Holoeye PLUTO-VIS). The incidence angle between the SLM and the beam is ϴ < 10° 
respect to the normal to ensure optimum phase modulation. A lens of focal length f = 75 cm 
placed in front of the SLM is employed to Fourier transform the beam at its back focal plane, 
then the resulting beam is focused and imaged on the microparticles sample by a 60X 
microscope objective, as shown in Fig. 2(a). We consider two cases, i) the SLM is off, so that 
a Gaussian beam of approximately 10 µm in diameter was obtained on the sample; and ii) a 
synthetic phase hologram (SPH) is displayed on the SLM to shape the Gaussian beam. 
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a) b)

 

Fig. 2. a) Optical set up. A 1W, 532 nm laser is focused onto a 1μm a-Si:H film. The laser 
beam power is controlled with a half-wave plate (HWP) and a polarizing beam splitter (PBS), 
then the beam is spatial filtered (SP) and collimated with lens L1. After reflection on the SLM, 
the hologram is recovered by Fourier transform by lens L2. DM is a dichroic mirror, MO is 
60x microscope objective. A white light source is used to illuminate the sample. The same 
objective is used to image the microparticles on the CCD camera. F is a filter that blocks the 
reflected green light to avoid CCD saturation, b) experimental image of the ring projected on 
the sample 

The SPH is the binary phase modulation of the zero-order Bessel beam, h = 
sign[J0(2πρ0r)], where the sign function takes the phase values π or –π, ρ0 is the spatial 
frequency, and r is the radial coordinate. The transmittance of this SPH in the Fourier plane, 
which is realized by the lens L2, reshapes the Gaussian beam into a ring of radius r0 = λfρ0 
[28]. In Fig. 2(b), we show an experimental image of the reconstructed ring. A white light 
source is used to illuminate the sample and the trapped particles are imaged into a CCD 
camera with the same microscope objective. Finally, an optical filter was placed in front of 
the CCD camera to block the reflected green light to avoid camera saturation. 

4. Results 

4.1 Trapping by convection 

Figure 3 shows snap shots of multiple particle trapping with a power of 0.8 mW. The broken 
line circle indicates the position of the laser beam. Note that particles are dragged from 
positions well beyond the field of view (~25x35) confirming the existence of convection 
currents. Optical trapping or electric field gradients due to space-charge redistribution, which 
is a possibility in amorphous semiconductors, are ruled out since they act nearby the laser 
beam. Since convection currents are symmetrically generated around the focal point, particles 
are collected around it. The average velocity of the particles is quite small ~2 μm/s, as a 
result, collecting a large number of particles takes more than 1 min. Note that at all times, the 
particle remains in focus at the substrate, indicating that the drag currents are weak and unable 
to overcome the gravity around the beam as the simulation indicates. Particles will continue to 
accumulate as long as the laser is on. In this way self-assembly of micro and nanoparticles is 
possible as shown in Ref 19. 

One obvious disadvantage of this approach is the inability to trap particles in real time. 
Simulations indicates that the fluid velocity (and therefore particle velocity) increases linearly 
with power P as v≅1.7(μm/mWsec)P, where P is measured in mW. Experimentally, this is true 
below 3 mW obtaining a velocity of 4.7 μm/s at a power of 2.7 mW. However, for P>3 mW, 
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the particles are repelled from the beam's center creating a ring-trapping zone as shown in Fig. 
4. 

5 µm

 

Fig. 3. Multiple trapping. Power of 0.8 mW, particles accumulated around the laser beam spot. 

Also, note that particles in the ring move very fast in closed trajectories, as the particles 
are in and out of focus periodically (see Visualization 1). The diameter of ring-trapping zone 
is weakly dependent on power. Particles in the ring can be trapped and manipulated in two 
dimensions in real time. Similar results were reported in [15] but only on the presence of a 
vapor bubbles. This trapping and manipulation mechanism involving just convective drag 
forces and photophoresis and not relying on bubble formation is presented here for the first 
time to our best knowledge. 

4.2 Trapping with vapor bubble 

Further increase of the power above 11 mW, leads to the formation of vapor bubbles similar 
to those reported in [15]. Due to the high absorption of the film, low power laser (11 mW) can 
easily heat the water up to its boiling point and form vapor bubbles (Fig. 5). The trapping 
mechanism was attributed to the complex interplay of the temperature dependent superficial 
tension and convection currents. We notice that the temperature dependent surface tension 
remains as long as the vapor bubble subsists, as we continue observing trapping long before 
the laser beam has been turned off. 

5 µm

5 µm

 

Fig. 4. Multiple trapping for power of 6 mW, the particles are trapped around of the area of the 
spot (Visualization 1). 

5 µm

 

Fig. 5. Trapping by means of a vapor bubble. The particles are trapped to high velocity using 
12 mW of laser power (Visualization 2). 

5. Discussions 

Our simulations describe qualitatively well the trapping (collection) of particles due to laser 
induced convection current showing that particles can be collected over the whole cell 
providing a mechanism for self-assembly of microparticles. Particles are dragged towards the 
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beam focus along the lower interface (a-Si:H) as they remain in focus at all times (depth of 
focus of 60x microscope objective ~1 μm). This is true even in the proximity of the beam 
where the velocity is the highest and directed upwards (see Fig. 1). One possible reason is that 
gravity and radiation pressure prevent the particles from moving out of focus. Once the power 
is increased (between 3 and 11 mW), the particles are expelled from the beam center forming 
a re-circulation zone around the beam spot. It is worth to mention that in non absorbing 
substrates, like glass, this recirculating zone does not appears even at much higher powers. In 
addition, in glass substrates the particles are trapped by the transversal gradient force within 
the beam. Light absorption at a:Si-H heats up the water molecules increasing its kinetic 
energy while outside the beam its energy is smaller, i.e a gradient of temperature (see Fig. 
1(b)) is produced. This means that particles within the temperature profile will be subject to 
non uniform forces i.e. thermo-photophoretic forces. So, particles in the beam will be expelled 
from hotter regions towards the coolest ones, at the same time convection currents drags 
particles towards the center of the beam forming a ring at the re-circulating zone. Although 
this recirculation zone in light-induced convection currents (see Fig. 1(c)) is predicted by 
theory, it occurs in the middle of the cell. Besides it extend over 50 μm, which is well beyond 
depth of focus of our optics, while in the experiment the particles move no more than ~10 μm. 
Similar results were demonstrate in Refs. 11 and 12 where convection and photophoresis were 
produced by water absorption. The ring-trapping zone is achieved by modest increase on the 
water temperature (~2°C). It was shown that DNA concentration can by increased by several 
orders of magnitude in a ring centered on the laser beam where a gentle balance of convection 
and photophoresis is achieved. In our case, we produce much larger temperature gradients due 
the high absorption coefficient of a-Si:H. This is turns means that stronger convection and 
photophoretic forces allow the trapping and manipulation of micron sized particles as shown 
here and even hundred micron sized particles trapping [8] using modest power lasers. Garcés-
Chávez et al showed that surface plasmon excitations activate convective forces that can be 
used to produce large-scale organization. Furthermore, they reduced vertical temperature 
gradients (and therefore convective forces) using a very thin cell (10 μm). By doing this, also 
large scale organization is produced by plasmonic forces. If the laser power is increased up to 
~1 W, a ring trapping zone is produced as in our case by balance of plasmonic and 
photophoretic forces. We believe that this ring could have being observed in thick cell if they 
had increased the beam power. In our experiments a few mW of light is enough to provide 
real time manipulation using a much simpler and lower cost setup. 

Modeling of thermophoretic forces is not an easy task, particularly in dense media since 
its amplitude is not only determined by the particle general bulk or surface physical properties 
(size, material density, thermal conductivity, or total surface charge) but rather it seems to be 
subtly related to the detailed microscopic nature of the particle/solvent interface [29]. 
Analytical solutions for the thermophoretic force in air exist (COMSOL include it in its 
library) but provide unrealistic (mm/sec) velocity in numerical simulations. Further modeling 
is outside of the scope of this paper since we are only interested on discussing the new 
manipulation mechanism. 

So far we have shown that photophoresis expels the microparticles from the hotter towards 
the coolest regions. However, if the Gaussian beam is reshaped to produce complex beam 
profiles such as rings, Bessel or any other optical landscapes, different trapping configurations 
may be possible. Using this concept, a ring of light is produced as a result of a SPH of a 
Bessel beam as described in the experimental section. In this case, particles will be repelled 
symmetrically towards the ring’s center. Outside the ring, the interplay of photophoresis and 
convective flow is still present as before. Approximately, 85 silica 2.5 µm particles in 
diameter are trapped simultaneously for a power of 18 mW (see Fig. 6). Note that although 
the power is larger than in the case of Gaussian illumination no vapor bubbles are produced 
because the local intensity is smaller than need it to reach vaporization. If power is increased 
beyond 20 mW, bubble formation and even thermocavitation can be observed. 
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Fig. 6. Trapping with a ring-shapped light source generated with SPH. Particles are repelled by 
photophoresis towards the ring’s center (Visualization 3). 

Furthermore, since trapping is fast, dynamic light patterns can be implemented without the 
need of patterning heaters on the substrate [10]. The use of thermophoretic force to trap DNA 
by means of light ring was demonstrated by Duhr and Braun [12]. We went further by 
showing that massive simultaneous trapping and manipulation of microparticles is possible. In 
Fig. 7, two examples of dynamic trapping with rings of light with different radius can be 
implemented to perform optical clearing (Fig. 7(a)), or to collection of particles (Fig. 7(b)). 
Note that in both cases when the ring is comparable to the heat diffusion length, 
microparticles near the ring center defocuses because vertical convective currents appear due 
to heat diffusion. This simple examples show that more complex configurations can be 
implemented in real time where operations like trapping, transport, and even sorting may be 
possible with SPH. 

t=0s t=2s t=6s

a)
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b)

5 µm

 

Fig. 7. Trapping with a dynamic ring-shaped light source generated with SPH: a) Optical 
clearing (Visualization 4) and b) Collecting and trapping particles (Visualization 5). 

6. Conclusions 

We have shown two dimensional trapping and manipulation can be achieved by convection 
currents using a low power lasers. For low power (0.8 mW) particles are trapped at the center 
of the beam but at higher powers (~3 mW) particles form a ring around the beam due to two 
competing forces: Stokes and thermo-photophoretic forces. Numerical simulations confirm 
that thermal gradients are responsible for the trapping mechanism. This technique offers a rich 
variety of trapping configurations. For example, illuminating the substrate with structured 
beams (rings, parallel lines, etc) could lead to the devices capable of performing an almost 
endless set of reconfigurable microparticle manipulations which combined the ability to move 
single cells or large biomolecules will produce a versatile and elegant life science tool. 
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