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We study the propagation of nonclassical light through arrays of coupled linear photonic waveguides and intro-
duce some sets of refractive indices and coupling parameters that provide a closed-form propagator in terms of
orthogonal polynomials. We present propagation examples of nonclassical states of light—single photon, coherent
state, path-entangled state, and two-mode squeezed vacuum—impinging into two-waveguide couplers and a
photonic lattice producing coherent transport. © 2014 Optical Society of America
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1. INTRODUCTION
Classical light propagating through arrays of coupled wave-
guides has provided a fertile ground for the simulation of
quantum physics [1,2]. These optical analogies of quantum
phenomena are changing the way photonic integrated devices
are designed, e.g., one-directional couplers [3], light rectifiers
[4], isolators, and polarization splitters [5]. As the manufactur-
ing quality for experimental devices increases [6], it will soon
be possible to propagate nonclassical light states through
linear photonic devices, and a full-quantum analysis of the
problem is at hand. In quantum mechanics, propagation
through an array of N coupled linear waveguides is ruled
by the Schrödinger-like equation i∂zjψ�z�i � Ĥjψ�z�i with a
Hamiltonian [7–11],

Ĥ �
XN−1

j�0

ωjn̂j �
XN−2

j≠k�0

gj;k�âjâ†k � âjâ
†
k�; (1)

where the real parameters ωj and gj;k are related to the effec-
tive refractive index of the jth waveguide and to the distance
between the jth and kth waveguides, in that order. The oper-
ators âj (â†j ) annihilate (create) a photon, and n̂j gives the
number of photons at the jth waveguide. Note that the vacuum
state j0i does not couple to any other states. Thus we will
expect that states with an important vacuum component,
e.g., coherent states jαi with a small coherent parameter
jαj ≤ 1, will serve as good examples for the peculiarities of
propagation in the quantum model.

Here we are interested in bringing forward a method in
Schrödinger picture and introduce a class of tight-binding
waveguide arrays related to orthogonal polynomials. Then,
we study a two-waveguide coupler and propagate Fock, co-
herent, two-mode entangled, and two-mode squeezed states.
Finally, we analyze the propagation of such nonclassical
states in a well-known photonic lattice used for the coherent
transport of classical fields and close with a brief discussion.

2. PROPAGATION IN TIGHT-BINDING
PHOTONIC LATTICES
For models with just nearest-neighbor coupling, Hamiltonian
(1) reduces to the form

Ĥ �
XN−1

j�0

ωjn̂j �
XN−2

j�0

gj�âjâ†j�1 � âjâ
†
j�1�: (2)

The equations of motion for the annihilation operators can be
written in matrix form, ∂za⃗�z� � −iMa⃗�z�, where the auxiliary
matrix M is tridiagonal, real, and symmetric; i.e., it is a Jacobi
matrix, �M�j;k � ωjδj;j � gj�δj;k−1 � δj−1;k�. We have used the no-
tation �X�j;k for the �j; k�th element of matrix X and defined a
vector of anihilation operators as a⃗��â0; â1; â2;…; âN−2; âN−1�.
It is straightforward to rewrite the matrix M as a product of the
eigenvector matrix V, where each row is an eigenvector, and
the diagonal eigenvalue matrix λ, M � VTλV. The eigenvalues
λi are calculated by the method of minors as the zeros of the
polynomial pN �λi� � 0 with p0�x� � 1, p1�x� � ω0 − x, and
pj�x� � �ωj−1 − x�pj−1�x� − g2j−2pj−2�x� [12]. Then, we can
define a set of multimode annihilation operators A⃗ � Va⃗ that
diagonalize Hamiltonian (2),

Ĥ �
XN−1

j�0

λjÂ
†
j Âj: (3)

For parameters that do not depend on the propagation
distance, the propagator is given by

Û�z� � e−iz
P

N−1
j�0

λj Â
†

j Âj : (4)

Some quantities of interest that can be measured in an exper-
imental scheme and tracked analytically are the number of
photons at each waveguide,
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hn̂j�z�i � hψ�0�jÛ†�z��V−1A⃗�†j �V−1A⃗�jÛ�z�jψ�0�i; (5)

where the notation �x⃗�j has been used to represent the jth
element of vector x⃗ and X−1 is the inverse matrix of X, and
the two-point correlation function,

g�2�p;q�z� � hψ�0�jÛ†�z��V−1A⃗�†p�V−1A⃗�p
× �V−1A⃗�†q�V−1A⃗�qÛ�z�jψ�0�i; (6)

which correlates the photon numbers detected at two wave-
guides. We could choose a higher-order detection probability
Γ�μ;ν�
p;q � hâ†μp â†νq âμpâνqi [9]; the two-point correlation function is

related to single detection μ � ν � 1. We will also use the
fidelity,

F �z� � jhϕjÛ�z�jψ�0�ij; (7)

which measures how similar the propagated state jψ�z�i �
Û�z�jψ�0�i is to a given state jϕi; sadly, this measurement
cannot be realized experimentally without full state
reconstruction. This procedure is valid for any given set of
real parameters fωj ; gjg, but here we are interested in bringing
forward some specific lattices related to orthogonal polyno-
mials. The classical propagation of light fields has already
been studied for some of these finite lattices: (i) identical re-
fractive indices and identical couplings [13]; the eigenvalues
are given by the roots of the Nth Chebyshev polynomial,
UN�λi∕2� � 0, and the components of the eigenvector matrix,
�V�j;k ∝ Uk�λj∕2�. (ii) Identical refractive indices and couplings
given by gj � g

�����������
j � 1

p
[12]; the eigenvalues are given by the

zeros of the Nth Hermite polynomial, HN �λj� � 0, and the
components of the eigenvector matrix, �V�j;k ∝ Hk�λj∕

���
2

p
�.

(iii) Binary refractive indices, ωj � ω�−1�j , and identical cou-
plings [14]; the eigenvalues are the roots of a Morgan–Voyce
polynomial, bm�ω2

− λ2j � for even N � 2m and Bm�ω2
− λ2j � for

odd N � 2m� 1, and �V�j;k ∝ bk∕2�ω2
− λ2j � for even k and

�V�j;k ∝ �ω2
− λ2j �B�k−1�∕2�ω2

− λ2j � for odd k. The method can
also be applied for semi-infinite lattices; e.g., refractive indices
given by ωj � �1� ω2��j � 1� and couplings given by
ω

������������������������������
�j � 1��j � 2�

p
[15] lead to eigenvalues λj � �1 − ω2�

�1� j� and to elements of the eigenvectors’ matrix propor-
tional to Jacobi polynomials.

3. TWO-WAVEGUIDE COUPLER
In order to give a practical example, let us study the propa-
gation of nonclassical light states through two coupled
photonic waveguides described by the Hamiltonian [10]

Ĥ � Δn̂1 � g�â1â†2 � â2â
†
1�; (8)

� γ1Â
†
1Â1 � γ2Â

†
2Â2; (9)

where the parameter Δ is a real number related to the refrac-
tive index difference, and the diagonalization parameters
are Â1 � αâ1 � βâ2 and Â2 � βâ1 − αâ2 with α �
2g�2Ω�Ω − Δ��−1∕2, β � �Ω − Δ�1∕2�2Ω�−1∕2, Ω � �Δ2 � 4g2�1∕2,
γ1 � �Δ�Ω�∕2, and γ2 � �Δ −Ω�∕2 [16]. This Hamiltonian
model is related to the quantum beam splitter described by
a parameter proprotional to gz [17–21]. It is straightforward
to calculate the photon number at each waveguide with this
method,

hn̂1i � hψ�0�jn̂1�z�jψ�0�i; hn̂2i � hψ�0�jn̂2�z�jψ�0�i; (10)

and the two-point correlation function

g�2�p;q � hψ�0�jn̂p�z�n̂q�z�jψ�0�i; p; q � 1; 2; (11)

with n̂1�z� � �Ω∕�2g��2�β2Â†
1Â1 � α2Â†

2Â2 � g�eiΩzÂ†
1Â2 �

e−iΩzÂ1Â
†
2�∕Ω� and n̂2�z� � �Ω∕�2g��2�α2Â†

1Â1 � β2Â†
2Â2 −

g�eiΩzÂ†
1Â2 � e−iΩzÂ1Â

†
2�∕Ω�.

We are used to thinking that light will transfer from one to
the other waveguide for a classical field impinging on one of
two identical waveguides, Δ � 0, but in the quantum case we
have to remember that the vacuum state does not couple be-
tween the guides. Thus, whenever a nonclassical state of light
with a strong vacuum component impinges on the two-wave-
guide coupler, the vacuum part of the whole state will remain
at the initial waveguide; e.g., a single photon impinging on one
of the waveguides will transfer to the second, but something
different will happen for a coherent state with a mean photon
number of one or less than one photon. For the single photon
impinging on the first waveguide, jψ�0� � j1; 0i, the mean
photon number at the waveguides is given by hn1�z�i �
cos2 gz and hn2�z�i � sin2 gz [Fig. 1(a)], and the fidelity,
F �z� � β2 cos γ1z� α2 cos γ2z, will oscillate between 0 and
1 for identical waveguides Δ � 0, γ1 � −γ2 [Fig. 1(b)]. The
two-correlation functions for identical waveguides will also
show a periodic transfer of the quantum state between the
waveguides [Fig. 1(c)]. For a coherent state, jαi � e−jαj

2∕2
P∞

j�0 α
j�j!�−1∕2jji, the amplitude for the vacuum state compo-

nent is proportional to e−jαj
2∕2 and will not transfer to the sec-

ond waveguide. Thus, for a coherent state with mean photon
number equal or less than 1, jαj ≤ 1, the vacuum amplitude
will be large enough compared with the other amplitudes;
e.g., for α � 1 the mean photon number at each waveguide
[Fig. 1(d)] looks identical to that of the single-photon case,
but the fidelities [Fig. 1(e)] and two-point correlation func-
tions [Fig. 1(f)] tell us that the initial quatum state of light
is never transferred to the second waveguide. Another com-
parison can be made between the propagation of an initial
two-mode path-entagled state jψ�0�i � �j1; 0i � j0; 1i�2−1∕2
that has a mean photon number of one-half in each waveguide
and will not evolve [Figs. 1(g)–1(i)] and a two-mode squeezed
state jri � cosh−1 r

P∞
j�0 tanh

j rjj; ji [22], which also has an
average photon number of one-half in each waveguide for r �
arcsinh 2−1∕2 [Figs. 1(j)–1(l)]. Again the mean photon number
at each waveguide for each case will look identical, but the
behavior of the fidelities and two-point correlation functions
tells us that in the first case the initial state does not evolve,
while in the second case it does evolve.

4. PHOTONIC LATTICE PROVIDING
PERFECT TRANSFER
Recently, a lattice providing perfect transfer of classical light
described by the Hamiltonian

Ĥ � 1
2

XN−1

j�1

Jj�â†j âj�1 � âjâ
†
j�1�; Jj �

π

2zt

�����������������
j�N − j�

p
(12)

has been proposed and demonstrated experimentally
[6,23,24]. The size of the lattice is given by N , and the param-
eter zt is the distance at which the transfer from the initial to
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the final end is given. The eigenvector matrix V for this pho-
tonic lattice is given by Jacobi polynomials [6] and can trans-
fer any given state initially impinging the jth waveguide into
the (N − j)th waveguide as long as the initial state does not
involve a vacuum component. When the initial state has a
strong vacuum component, this particular part of the state will
not transfer, and this will reflect in the fidelity at the output
and the two-point correlations as shown in Fig. 2. Again we
can see that the single-photon input and the coherent state

with a single-photon mean photon number show identical
mean photon number propagation [Figs. 2(a) and 2(d)], but
the fidelities [Figs. 2(b) and 2(e)] and two-point correlation
functions [Figs. 2(c) and 2(f)] tell us that only in the single-
photon case is the initial state faithfully transferred to the
end of the lattice. The same happens when we compare
the propagation of a two-mode path-entangled state with that
of a two-mode squeezed vacuum, both with a total mean pho-
ton number of 1; the mean photon number propagation at

Fig. 1. Propagation of the mean photon number at the first (solid black) and second (dashed blue) waveguides (first column); fidelities for finding
the initial state back in the first (solid black) or transferred to the second (dashed blue) waveguide (second column); and two-point g�2�1;1 (solid
black), g�2�1;2 � g�2�2;1 (dashed blue), and g�2�2;2 (dotted red) correlation functions (third column) for a single photon jψ�0�i � j1; 0i (first row), a coherent
state jψ�0�i � jα; 0i with α � 1 (second row), a two-mode entangled state jψ�0�i � �j1; 0i � j0; 1i�2−1∕2 (third row), and a two-mode squeezed
vacuum jψ�0�i � jr; 0i with r � arcsinh 2−1∕2 (fourth row). The two-waveguide coupler is described by the parameter set Δ � 0 and g � ω1.

Fig. 2. Propagation of the mean photon number at the first (solid black), second (solid blue), third (dashed blue), and fourth (dashed black)
waveguides (first column); fidelities for finding the initial state back in the first two (solid black) or transferred to the last two (dashed blue)
waveguides (second column); and two-point g�2�1;1 (solid black), g�2�1;2 � g�2�2;1 (dashed black), g�2�1;3 � g�2�3;1 (dotted black), g�2�1;4 � g�2�4;1 (dotted–dashed

black), g�2�2;2 (solid blue), g�2�2;3 � g�2�3;2 (dashed blue), g�2�2;4 � g�2�4;2 (dotted–dashed blue), g�2�3;3 (solid red), g�2�3;4 � g�2�4;3 (dashed red), and g�2�4;4 (solid green)
correlation functions (third column) for a single photon in the first waveguide jψ�0�i � j1; 0; 0; 0i (first row), a coherent state jψ�0�i � jα; 0; 0; 0i
with α � 1 (second row), a two-mode entangled state jψ�0�i � �j1; 0; 0; 0i � j0; 1; 0; 0i�2−1∕2 (third row), and a two-mode squeezed vacuum jψ�0�i �
jr; 0i with r � arcsinh 2−1∕2 (fourth row). The photonic lattice is described by the parameter set Δ � 0 and gj � π�2zt�−1

�����������������
j�N − j�

p
with zt � 1 and

N � 4.
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each waveguide is identical, but the fidelities and two-point
correlation functions will differ and point to faithful state
transfer just in the case of the two-mode path-entangled state.
Figures 2(g)–2(i) show the propagation results for the two-
mode entangled state, and Figs. 2(j)–2(l) show the propaga-
tion of a two-mode squeezed vacuum state with a squeezing
parameter r � arcsinh 2−1∕2 leading to a total mean photon
number of 1.

5. CONCLUSION
We have shown a method to deal with nonclassical light
propagating through tight-binding arrays of coupled linear
waveguides. While we focused on listing refractive indices
and coupling parameters that allow us to diagonalize the quan-
tum Hamiltonian by use of multimode annihilation operators
whose cofficients are given in terms of orthogonal polyno-
mials, the method can be used for any given set of parameters
as a real symmetric tridiagonal matrix is always feasible for
diagonalization. For the sake of bringing forward one of
the most pronounced differences between propagation of
classical and nonclassical states of light, we focused on com-
paring the propagation of states lacking a vacuum component,
the single-photon and two-mode entangled states, with those
showing a significant vacuum component, the coherent and
two-mode squeezed states with one or less than one mean
photon number.
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