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Abstract: A technique for experimental determining the coherent-mode 
structure of electromagnetic field is proposed. This technique is based on 
the coherence measurements of the field in some reference basis and 
represents a nontrivial vector generalization of the dual-mode field 
correlation method recently reported by F. Ferreira and M. Belsley [Opt. 
Lett. 38(21), 4350 (2013)]. The justifiability and efficiency of the proposed 
technique is illustrated by an example of determining the coherent-mode 
structure of some specially generated and experimentally characterized 
secondary electromagnetic source. 
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1. Introduction 

The coherent-mode representation of an optical field broached the first time by Gamo [1] and 
later on developed by Wolf [2–4] is an essential tool in describing the processes and systems 
in optics [5]. Not so long ago the theory of coherent-mode representation, originally 
developed for scalar optical fields, has been generalized to the case of vector electromagnetic 
fields [6–8]. This representation is defined through the solution of the Fredholm integral 
equation with a kernel taken as the cross-spectral density matrix of the field. However, in 
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practice the cross-spectral density matrix of the field as a rule is unknown a priori. In theory 
the cross-spectral density matrix of the field can be measured with four special Young’s 
interference experiment [9,10], but in practice such a measurement is unfeasible in view of 
enormous volume of data to be processed. 

Recently a new promising approach to the problem of experimental determining the 
coherent-mode structure of a scalar optical field has been proposed by F. Ferreira and M. 
Belsley [11]. This approach is based on the decomposition of a scalar field in some subsidiary 
orthogonal basis, which allows considerable simplification of the coherence measurements 
process. Here we propose the generalization of this approach to the case of a vector 
electromagnetic field. The justifiability and efficiency of the proposed technique is illustrated 
by an example of determining the coherent-mode structure of some specially generated and 
experimentally characterized secondary electromagnetic source. 

2. Coherent-mode structure of electromagnetic field 

We start recalling the basic concepts of the theory of partially coherent electromagnetic fields 
in the space-frequency domain [7]. According to this theory the second-order statistical 
properties of a stochastic stationary electromagnetic field occupying some finite domain D in 
some plane normal to the direction of propagation and at some frequencyν may be 
completely characterized by the so-called cross-spectral density matrix (for brevity we omit 
the explicit dependence of the considered quantities onν ) 

 1 2 1 2

1 2
1 2 1 2
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where 

 1 2 1 2( , ) ( ) ( ) , ( , , ),ij i jW E E i j x y∗= =x x x x  (2) 

with iE and jE being the orthogonal components of the electric field vector E at two 

points 1x and 2 ,x  asterisk denoting the complex conjugate, and the angle brackets denoting the 
average over the statistical ensemble. Furthermore, the correlation properties of a partially 
coherent and partially polarized electromagnetic field may be characterized quantitatively 
using the degree of coherence and degree of polarization defined by the formulas, 
respectively, 
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where Tr stands for the trace, Det denotes the determinant of matrix, and the dagger denotes 
the Hermitian conjunction. As has been shown in [7], under very general conditions the cross-
spectral density matrix W may be represented in the form of series, i.e., 

 1 2 1 2( , ) ( , ), ( 0,1,2,...),n n
n

nλ= =W x x W x x  (5) 

where 1 2( , )nW x x  is the 2 2× matrix with elements 

 ; 1 2 ; 1 ; 2( , ) ( ) ( ).ij n i n j nW ϕ ϕ∗=x x x x  (6) 

In Eq. (5) nλ  and ( ) ( )i
nϕ x are the eigenvalues and the eigenfunctions of two coupled integral 

equations 
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 ; 1 2 ; 1 1 ; 2( , ) ( )d ( ).ij n j n n i nD
j

W ϕ λ ϕ= x x x x x  (7) 

The eigenvalues are real and nonnegative, and the eigenfunctions satisfy the orthonormality 
condition 

 ; ;( ) ( )d ,i n i m nmD
ϕ ϕ δ∗ = x x x  (8) 

where nmδ is the Kronecker symbol. Each matrix 1 2( , )nW x x in Eq. (5) can be associated with 

an elementary mode of the field which is completely coherent ( 1nη = ) and completely 

polarized ( 1nP = ).Therefore the set of nλ and ; ( )i nϕ x is referred to as the coherent-mode 

structure of the field. 

3. Decomposition of the coherent-mode structure in reference basis 

Now, adopting the main idea of [11] originally formulated for a scalar field, we will show that 
the coherent-mode structure of a vector electromagnetic field may be defined in a more 
practical way. To do this, we assume that the realizations of each orthogonal component iE of 

the electric field vector can be expanded in some orthogonal basis{ ( )},kψ x  which we will 
refer to the reference basis, as follows: 
 ;( ) ( ),i i k k

k
E a ψ=x x  (9) 

 ( ) ( )d ,k l klD
ψ ψ δ∗ = x x x  (10) 

 ; ( ) ( )d .i k i kD
a E ψ ∗=  x x x  (11) 

Substituting for iE from Eq. (9) into Eq. (2), we obtain 

 1 2 ; 1 2( , ) ( ) ( ),ij ij kl k l
k l

W c ψ ψ∗=x x x x  (12) 

where 

 ; ; ; .ij kl i k j lc a a∗=  (13) 

Substituting from Eq. (12) into Eq. (7), we find 

 ; ; ; ;( ) ( ),ij kl j n k l n i n
j k l

c b ψ λ ϕ= x x  (14) 

where 

 ; ; ; ( ) ( )d .j n k j n kD
b ϕ ψ ∗=  x x x  (15) 

Finally, multiplying both sides of Eq. (14) by ( )sψ ∗ x and integrating the result over x with due 
regard for the orthogonality relation (10), we obtain the system of algebraic equations 

 ; ; ; ; ; .ij kl j n k n i n l
j k

c b bλ=  (16) 

This system can be written in matrix form as follows: 
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where ijC is the square matrix with elements given by Eq. (13) and ;i nB is the column matrix 

with elements given by Eq. (15). The eigenvalues nλ can be found by solving the characteristic 
equation 
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By virtue of definition (13) the matrix C composed of sub-matrices ijC is Hermitian  

( †C  = C ), assuring that all eigenvalues will be real as stated in the previous section. Once 
the eigenvalues nλ have been found, one can calculate the coefficients ; ;i n kb solving the 

corresponding system given by Eq. (17). Then, the unknown modal functions ; ( )i nϕ x  can be 

determined in form of the expansions 
 ; ; ;( ) ( ).i n i n k k

k
bϕ ψ=x x  (19) 

It must be noted that in practice one needs truncating the complete reference basis by 
finite number K of functions ( ),kψ x  which depends on the field complexity and the degree of 
mismatch between the reference basis and actual modal basis of the field [11]. In fact, the 
number K is limited by the admissible complexity of field correlation measurements (see next 
section) and cannot exceed a few tens. On the other hand, K determines the number of 
sought-for coherent modes ( ).nϕ x  As well known [12], the effective number of coherent 
modes depends on the degree of coherence of the field and can take a very great value for 
rather incoherent field. Thus, the proposed technique may be effectively used only for fairly 
coherent fields. At first sight this circumstance restricts seriously our technique in its possible 
applications. However, we remark that a field with a low enough degree of coherence 
frequently can be considered approximately as completely incoherent, when the concept of 
the coherent-mode structure and, hence, the proposed technique lose in general their practical 
sense. 

4. Measurement of matrix C  

To solve Eq. (17), the coefficients ;ij klc must be known. Below we show that these coefficients 

can be measured by means of the modified Mach-Zehnder interferometer sketched 
schematically in Fig. 1. 

 

Fig. 1. Optical system for measuring coefficients ;ij klc : BS, beam splitter; M, mirror; P, 

polarizer; R, polarization rotator; SLM, spatial light modulator; L, lens. 

#214588 - $15.00 USD Received 23 Jun 2014; revised 4 Oct 2014; accepted 5 Oct 2014; published 17 Oct 2014
(C) 2014 OSA 20 October 2014 | Vol. 22,  No. 21 | DOI:10.1364/OE.22.026232 | OPTICS EXPRESS  26235



Let us consider that the electromagnetic field at the input of interferometer is 
characterized by the electric field vector ,E  and let polarizers P1 and P2 be chosen to 

transmit only one orthogonal component xE or .yE  The polarization rotators R1 and R2 serve 

to align the polarization planes of the selected orthogonal components allowing their posterior 
interference. The spatial light modulators SLM1 and SLM2 modify independently the 
amplitudes of selected components. The lens L projects the Fourier transform of the incident 
field onto its back focal plane. 

Let the amplitude transmittance of each spatial light modulator be described by 

 ( )0 0( ) 2 ( ) cos Arg ( ) 2 ,k k k kt t xpψ ψ π β= + + +  x x x  (20) 

where 0t is a constant chosen to provide the non-negativity of ( ),kt x  and 0p and kβ are the 
constants whose meaning will be defined below. The amplitude of the field in the back focal 
plane of lens L is given by 

 ;

2
( ) ( ) ( ) ( ) ( ) exp d ,ij kl i k j lD

U E t E t i
f

π
λ

 ′ ′ = + ⋅  
 

x x x x x x x x  (21) 

where λ is the wavelength of illumination and f is the lens focal distance. Then, substituting 
from Eq. (20) into Eq. (21) with due regard of notation (11), one finds that the field amplitude 
at the specific point 0 0( , 0)fpλ′ =x  is as follows: 

 ; ; ;exp( ) exp( ).ij kl i k k j l lU a i a iβ β= − + −  (22) 

Thus, the average intensity of the field at this point with due regard of notation (13) appears 
to be 

 
2

; ; ; ; ; ;( ) exp( ) exp( ),ij kl kl ij kl ii kk jj ll ij kl kl ij kl klI U c c c i c iβ β β∗= = + + + −  (23) 

where .kl k lβ β β= −  It can be readily shown that, measuring the intensity given by Eq. (23) 

for two particular values 0klβ = and / 2,klβ π= −  one can find the real and imaginary parts 

of ;ij klc  as follows: 

 ; ; ; ;

1 1 1
Re( ) (0) (0) (0),

2 8 8ij kl ij kl ii kk jj llc I I I= − −  (24) 

 ; ; ; ;

1 1 1
Im( ) ( / 2) (0) (0).

2 8 8ij kl ij kl ii kk jj llc I I Iπ= − − −  (25) 

Taking into account the Hermitian symmetry of matrices ijC and Eqs. (24) and (25), it can be 

easily found that the number of needed measurements is equal to 2 (2 1).K K +  

5. Experiments and results 

To illustrate the justifiability and efficiency of the proposed technique, we determined the 
coherent-mode structure of some electromagnetic source whose cross-spectral density matrix 
can be measured directly in experiment and hence be known a priori. Such a source has been 
generated by means of partial destructing the coherence of linearly polarized laser radiation 
using a rather simple technique reported by us recently in [13] and sketched in Fig. 2. 
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Fig. 2. Schematic illustration of the technique for generating the partially coherent and 
partially polarized electromagnetic source: BE, beam expander; BS, beam splitter; PBS, 
polarizing beam splitter; M, mirror; GGP, rotating ground glass plate. 

The complex amplitude transmittance of each rotating ground glass plate is assumed being 
described by the function 

 ( ) ( )( ) exp ( ) ,x y x yt iφ =  x x  (26) 

where ( )xφ x and ( )yφ x are the real random processes which obey Gaussian statistics with zero 

mean and second-order correlation given by the expressions 
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( ) ( ) .x yσ φ= x  (29) 

Then, considering that the polarization plane of the primary source radiation makes an angle 
of 45 with x direction, the cross-spectral density matrix of generated secondary source can be 
well approximated as follows (see [13]): 
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x x

x xW x x
x x

  (30) 

where 0S is the spectral density (intensity) at the origin of primary source andα is the 
effective (rms) size of this source. It must be noted that Eq. (30) describes the so-called 
Gaussian Schell-model source, whose coherent-mode structure is well known [3,4]. We 
generated this source using a He-Ne laser ( 633nmλ = ) as a primary source and a pair of 

ground glass plates with diffusion angles of10 and 30 , considering the 
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parametersα and ( )x yγ to be unknown. The elements of matrix SSW  for different pairs of 

points 1 1( / 2, 0)x yξ= − =  and 2 2( / 2, 0)x yξ= = were measured in the modified Young’s 
experiment sketched in Fig. 3 (see [13]). The obtained measurement data were fitted by the 
theoretical curve in accordance with Eq. (30). 

 

Fig. 3. Schematic illustration of modified Young experiment for measuring the cross-spectral 
density matrix of generated secondary source: BS, beam splitter; M, mirror; TP, translating 
pinhole; P, polarizer; R, polarization rotator. (The purpose of P and R is just the same as in 
technique sketched in Fig. 1.) 

Further, employing the technique described in the previous section, we measured the 
coefficients ;ij klc for the generated source. When doing this, as the reference basis we chose the 

set of orthonormal Hermite-Gaussian functions 

 
1/2 2

2

1
( ) exp ,

22 !
k kk

x xx H
k

ψ
ααπα

    = −    
    

 (31) 

which are the actual coherent modes of a 1-D Gaussian Schell-model source [3,4]. To 
simplify our experiment, we truncated the reference basis by 5K = terms. To encode the 
reference basis functions in accordance with Eq. (20), we employed two identical computer-
controlled liquid-crystal spatial light modulators LC2002 from HoloEye Photonics AG, 
providing the amplitude-only operating mode with appropriate adjustment of polarization 
axes and special gamma-correction of the control signal [14]. The control video signals were 
generated in PC using Matlab software routines and then displayed by turns onto the liquid-
crystal screen with accuracy of 256 gray levels and resolution 800 600× pixels. To provide 
the reliability of measurements, we undertook a special preliminary joint calibration of the 
amplitude transmittances in both arms of the interferometer (Fig. 1). For this purpose we 
made efforts to attain the minimum level ( 0)≈ of the signal registered at the output of optical 
system applying to the spatial light modulators two orthogonal control signals and 
illuminating them with the same completely coherent uniform field. 

The realized measurements showed that the coefficients ;ij klc with i j≠ were almost zero 

while the coefficients ;ij klc with i j= had non-zero real values, a fact that could be expected 

due to the nature of theoretical model given by Eq. (30). This circumstance allowed us to 
replace the eigenvalue problem presented by Eq. (18) by two independent eigenvalues 
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problems for sub-matrices xxC and .yyC  To solve these problems, we used standard Matlab 

program. Once the eigenvalues have been found we computed the eigenfunctions ; ( )i n xϕ in 

accordance with Eq. (19) and then the cross-spectral densities 1 2( , )iiW x x  in accordance with 
Eq. (5). The results of computation are presented in Fig. 4 by solid curves. For comparison 
the results of direct measurements are shown by dotted curves. A slight mismatch of these 
curves (less than 5%) is due to an inevitable measurement error. 

 

Fig. 4. Normalized cross-spectral densities of generated secondary source measured in 
experiment (dotted curves) and determined in accordance with the proposed technique (solid 
curves) for ground glass plates with diffusion angles of 10° (a) and 30° (b). 

6. Conclusions 

We have proposed a technique of experimental determining the coherent-mode structure of 
electromagnetic field. This technique is based on the coherence measurements of the field in 
some reference basis and represents a nontrivial vector generalization of the dual-mode field 
correlation method recently reported by F. Ferreira and M. Belsley for a scalar case [11]. Of 
course the proposed technique needs more physical and computational effort, but it is the 
price of vector generalization. The justifiability and efficiency of the proposed technique has 
been demonstrated with an example of determining the coherent-mode structure of some 
specially generated and experimentally characterized secondary electromagnetic source. 
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