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In this work, we demonstrate the possibility of generating and controlling any given kind of structured radially
symmetric intensity profile with an embedded optical vortex. This is achieved with the use of Sturm–Liouville
theory on a circular domain with Bessel, Laguerre–Gauss, Zernike, and Fourier bases. We show that the core in-
tensity profile can be constructed independently of the topological charge of the vortex. © 2014 Optical Society
of America
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1. INTRODUCTION
Electromagnetic vortices have become an active theme of re-
search in the last two decades due to their association with
the orbital angular momentum (OAM) of light and their wide
spectrum of applications ranging from atom traps to optical
tweezers, microscopy, optical communications, or astronomy
[1–3]. Similarly, there has been increased interest in the use of
structured light fields in various applications where control
over the intensity profile is an advantage, such as in optical
trapping [4] and three-dimensional measurements and print-
ing [5], for example.

Vortex fields, known for carrying OAM, may arise naturally
in the solutions of several differential equations (DEs) of
mathematical physics, having an azimuthal dependence of
the form exp�imφ� with m being an integer that defines the
topological charge of the vortex. For the paraxial wave equa-
tion the Laguerre–Gaussian (LG) functions are solutions of
the paraxial wave equation and are well known for carrying
OAM that is associated with its vortex solution [6]. This is just
a particular case but any electromagnetic beam solution with
a vortex component can carry OAM, as has been proved for
Bessel beams which are described by the solutions of the
Helmholtz equation in circular cylindric coordinates [7]. By
looking at the 11 coordinate systems in which the Helmholtz
equation is separable, we find that besides the Bessel
solutions there are four other systems that yield separable
vortex solutions: parabolic coordinates, prolate and oblate
spheroidal coordinates, and the well-known spherical
coordinates [8,9].

Wave equations of mathematical physics often lead to
Sturm–Liouville (S-L) type DEs whose solutions are orthogo-
nal functions [10–13]. These were recognized to have relevant
properties used in communications more than half a century
ago [14]. Optical vortices described by radial functions from a
S-L DE can create two infinite-dimensional Hilbert spaces.
One for the azimuthal index and the other for the orthogonal

coordinate that for two-dimensional vortices is the radial
index. By exploiting the OAM property of vortex fields, asso-
ciated with the azimuthal index, these fields have been pro-
posed as means of transmission of quantum information
through entangled states expanding the possibilities of quan-
tum cryptography and quantum communications [15,16].
Moreover, it has been suggested that the capacity of commu-
nications channels, cryptographic properties, and quantum al-
gorithms can be improved by incorporating the radial modes
Hilbert space of optical vortices [17].

In this work we show that it is possible to engineer struc-
tured vortex fields with tailor made radial intensity profiles by
applying the S-L theory. Among the many possible bases, we
have chosen four of them that are related to diffractive optics.
Three of the bases studied here arise from DEs of the S-L type
in a circular two-dimensional domain and they are the Bessel
function (BF), the LG functions, and the Zernike polynomials
(ZPs). The fourth one, comes from the well-known one-dimen-
sional Fourier analysis but applied to the radial coordinate.
We show that the resulting representation can be used for
further investigating the imaging or propagation of these
vortices.

2. BASIC STRUCTURE OF FUNDAMENTAL
VORTICES
We will refer to fundamental vortex fields as those that are
analytic solutions of a DE. Fundamental vortex fields have
a radially symmetric ringed structure either finite or infinite,
with their inner most ring radius depending on the parameters
of the corresponding DE and its initial condition. Figure 1
shows the squared amplitude of radial profiles for vortices
with the same topological charge m � 5. The first two rows
show a set of LG modes of only one ring, n � 0 [Fig. 1(a)], and
three rings, n � 2 [Fig. 1(b)], with reducing beams waist w0

causing the reduction of the central ring radius in each case.
Observe also that having more rings results in the reduction of
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the radii of the rings for the same w0 used for a single ring.
Figure 1(c) shows the ring radius dependence on the increas-
ing radial frequency kr for BFs. Finally, Fig. 1(d) depicts the
ZP showing the reduction of the ringed pattern with increas-
ing radial order n. Thus, we conclude that for a physical vor-
tex, it is the interplay between the radial and azimuthal
parameters that control the radius of the vortex and not only
the azimuthal one. We remark that this demonstrated behav-
ior for a fixed topological charge contrasts with the recently
introduced concept of the “perfect” optical vortex “whose
dark hollow radius does not depend on the topological
charge” [18]. We notice that for all of the cases shown in
Fig. 1, even though the radius can be controlled, either in
a continuous (LG) or a discrete way (BF and ZP), not so
the shape of the profile, which is determined by the mode.
In studies of transfer of OAM to microparticles it has been
shown that besides the topological charge the velocity in-
duced also depends on the intensity of the beam that carries
the vortex [7]. In order to enhance the efficiency of transfer
of OAM engineering, a desired profile for a vortex of a given
topological charge m would have potential applications [19].
For this purpose we recourse to the S-L theory in order to
provide a suitable way to engineer generalized “perfect”
vortices.

3. STURM–LIOUVILLE VORTICES
A. Sturm–Liouville Theory
This theory establishes in simple words that any function f �x�
piecewise continuous square integrable in the interval
a ≤ x ≤ b can be expressed as

f �x� �
X∞
n�0

hunjf iun�x�; (1)

where fun�x�g�n � 0; 1; 2;…� is an infinite set of eigenfunc-
tions of a self-adjoint operator. They are mutually orthonor-
mal with respect to the weight function s�x�, i.e.,

humjuni �
Z

b

a
u�
m�x�un�x�s�x�dx � δmn; (2)

and satisfy certain boundary conditions (BCs) at the ends of
the interval a ≤ x ≤ b of a S-L DE. If f �x� satisfies the same BC
as the basis functions, then the infinite series (1) converges
uniformly and absolutely to f in the interval. If f does not sat-
isfy the BCs then the series converges in the mean [10–13].

Optical vortices are characterized by functions of the sepa-
rable type A�r�eimφ allowing the S-L analysis of the radial func-
tion A�r� in terms of any family of eigenfunctions defined in
the one-dimensional radial coordinate for each given m. In a
two-dimensional domain, the inner product of two separable
functions is also separable. This makes it possible to investi-
gate the resulting one-dimensional inner products separately.
For functions not explicitly expressed in a separable form, but
defined in a circular domain, they always can be expressed by
its circular harmonics [20]. This circular harmonic represen-
tation can be done even for nonperiodic functions with the
only repercussion that the series converges in the mean [21].
Eigenfunctions are common in mathematical optics; we will
use bases of four families of them to engineer optical vortices
with tailor-made radial profiles.

B. Laguerre–Gauss Basis
The LG eigenfunctions are solutions of the paraxial wave
equation in cylindrical coordinates �r;φ; z� in free space
and in quadratic gradient index media [22,23]. These functions
are built with the associated Laguerre polynomials and their

weighting function e−�x∕2�xjmj∕2Ljmj
n �x�. Since their DE is singu-

lar at the origin, the zero BC at infinity is needed. Their orthog-
onality is defined in the interval �0;∞� with respect to the
index n [10,13].

In free space, LG beams are defined by

ELG�r;φ; z� � E0
w0

w�z�
�

2r2

w2�z�

�jmj
2

Ljmj
n

�
2r2

w2�z�

�

× exp
�

−r2

w2�z� −
ikr2

2R�z� � i�2n� jmj � 1�Φ�z� � imφ

�
; (3)

where the parameters in this equation are the beam waist w0,
the beam widthw2�z� � w0�1� �z∕R0�2�, the transverse phase
front R�z� � z�1� �R0∕z�2�, and the Gouy phase shift
Φ�z� � tan−1�z∕R0�. In all these expressions R0 � kw2

0∕2 is
the Rayleigh distance or diffraction distance for the wavenum-
ber k � 2π∕λ. The vortex character is evident through the
term showing the azimuthal dependence eimφ. The parameters
n and m are now identified as the radial and azimuthal order
of the associated Laguerre polynomials, respectively. These
two quantities and the beam waist w0 are control parameters
for the radius of the first ring for the LG intensity pattern, as
shown in Figs. 1(a) and 1(b).
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Fig. 1. (a) Laguerre–Gauss functions with azimuthal order m � 5
and radial order n � 0 showing the radial dependence of the profile
on the Gaussian width; w0 � 0.1, 0.2 and 0.3. (b) Laguerre–Gauss
functions with same widths and m � 5 but radial order n � 2.
(c) BFs of the same order m � 5 but increasing radial frequency kr
corresponding to the first three eigenvalues. (d) ZPs with m � 5
and increasing radial order n � 1, 2, and 3.
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The fact that the LG beams are free-space modes of the
paraxial wave equation allows us to analyze in a straightfor-
ward manner the whole propagation of any vortex beam
constructed with this basis.

C. Bessel Basis
The BFs J jmj�αnmx� are orthogonal in the unit interval [0,1] for
any given orderm. Since also the Bessel DE has a regular sin-
gularity at the origin, only the BC at x � 1 is required [10,13].
The value of this BC is zero and the orthogonality is with re-
spect to the eigenvalues αnm�n � 1; 2;…�, necessary to satisfy
the BC at the ends of the aforementioned interval [24,25].

In optics, the BFs appear as the eigenfunctions of the
Helmholtz wave equation in circular cylindrical coordinates
fromwhich the Bessel vortex beams solutions are represented
by [26,27]

EB�x; y; z� � E0J jmj�krr�eikzz�imφ: (4)

The parameters kr and kz are, respectively, the magnitudes of
the radial and longitudinal components of the wave vector
whose magnitude is k � 2π∕λ and kr � αnm. They are related
through k2 � k2r � k2z. For each element of the basis, it is the
azimuthal orderm and the radial eigenvalue kr that determine
the radius of the first ring. See Fig. 1(c).

These Bessel beam eigenfunctions can be used to construct
a vortex beam with a designed radial intensity profile using a
finite number of elements and study the dynamics of its propa-
gation within the distance defined by the maximum frequency
used in the expansion [28]. Using a similar approach, the
Bessel basis has been successfully proposed as an alternative
for studying optical surfaces that occur in visual optics [29].

D. Zernike Basis
These are the eigenfunctions of an invariant DE in a unitary
circular domain investigated by Zernike [30–32] and unlike
the previous bases, they satisfy unitary BC at r � 1; this is
the only one required since the DE also has a regular singu-
larity at the origin. The Zernike circular eigenfunctions are
defined by

Zm
n �r;φ� � Rjmj

n �r�eimφ; (5)

where Rjmj
n �r� are the ZPs with n and m, as for the LG, being

the radial and azimuthal parameter, respectively. These eigen-
functions are very well known in the study of optical aberra-
tions and can easily be computed to any order [32–34]. An
important property of the Zernike basis is that the Hankel
transform of a ZP is a BF that is independent of the azimuthal
parameter m, namely [30,31],

Z
1

0
Rjmj
n �r�J jmj�ρr�rdr � �−1�n−jmj

2
Jn�1�ρ�

ρ
: (6)

Notice that the BF on the right-hand side has index n� 1, and
it is related to the radial index, rather than the azimuthal,
which appears in the BF of the integrand on the left-hand side.
For Zernike optical fields, the radius of the first ring is deter-
mined by the azimuthal order m and the radial eigenvalue n.
See Fig. 1(d).

Equation (6) has an immediate physical application, once
the vortex is constructed, it allows us to find in a forthright
way its focused pattern as a superposition of BFs. A further
physical outcome is that since the Hankel transform is sym-
metrical, this relation also hints a method to create arbitrary
Zernike optical fields out of modulated Bessel beams.

E. Fourier Basis
Fourier series are a particular case of a S-L problem that is
common to find associated with problems with periodic
BCs. We remark here that this is not a requirement but a con-
sequence of the fact that the elements of the basis are periodic
functions.

We recall that any function f �x� piecewise square inte-
grable in the symmetric interval �−l; l� can be represented by
a Fourier series [11,13]. For the radial coordinate the interval
is �0; a� that is obtained by the transformation r �
�a∕2l��x� l�. Making the substitution x � ��2∕a�r − 1�l trans-
forms f �x� → F�r� and we can write for the elements of the
basis

Fm
n �r;φ� � �−1�n cos

sin

�
2nπ
a

r
�
eimφ: (7)

In this case, by construction, the radius of the first ring is in-
dependent on the azimuthal parameter and depends only on
the radial parameter n.

4. STURM–LIOUVILLE THEORY OF
DISCRETIZED EIGENFUNCTIONS
We now express the S-L theory for a sampled function defined
in the interval �a; b�. For simplicity, let us assume that the
M � 1 sample points a ≤ x0 < x1 < … < xM ≤ b are equally
spaced. Using a basis with N elements we can recast
Eq. (1) as

f � Uc� εN; (8)

where f is a column vector composed of the ordered sampling
of the radial profile to be created; U is the matrix whose el-
ements are umn � un�xm�, with un�x� the nth eigenfunction of
the basis. The vector c contains the expansion coefficients
and the column vector εN represents the rest of the expansion
and accounts for the error due to using a finite number of
elements in the infinite sum. Since fung is an orthonormal
basis, the S-L theory guarantees that this is the minimum pos-
sible error when approximating f withUc and that, even in the
worst case of f not satisfying the same BCs as the basis, it
converges in the mean in the least-square sense [11]. By
the process of sampling, the problem of obtaining the expan-
sion coefficients has been greatly reduced to a simple matrix
inversion.

A. Applications
To show the usefulness of the present scheme we present two
examples that differ considerably from any fundamental vor-
tex beam. The first example is a staircase profile composed by
the superposition of two super-Gaussian functions, as shown
in the top-left frame in Fig. 2, and its construction using vortex
beams with three different topological charges m � 1, 7, 20.
The rest of the panels in Fig. 2 show the rms error produced by
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approximating the profile with 100 eigenfunctions of the
Bessel (B), Zernike (Z), Laguerre–Gauss (LG), and Fourier (F)
bases. We can see how the Bessel basis converges best to the
profile while the Zernike performs worst as expected due to
its BCs being different than those of the target profile. Overall,
it is seen that the Bessel and Fourier bases behave similarly
due to the asymptotic behavior of the former [24,25]. The LG
basis has the extra control parameter w0 that allows fine tun-
ing (w0 � 0.10 in the present calculation, notice the use of a
normalized range in the examples). There is no rule of thumb
for the value of this parameter, it will depend on the profile
being approximated [35,36].

As a second example we analyze the engineering of a vortex
beam with a more elaborated profile constructed with the
same bases and topological charges used in the staircase pro-
file above. In this case we have chosen to design a piecewise
continuous sawtooth with a growing profile useful for a uni-
form, intensity-dependent, transfer of OAM [7]. In the top-left
frame of Fig. 3, we show the corresponding sawtooth intensity
profile.

This second example is interesting for several aspects. In
general, the convergence for all bases is good, as can be
seen from the panels in Fig. 3. However, we notice that in-
creasing m results in a deterioration of the convergence near
the origin due to the mth order polynomial behavior of each
basis in that region, making the derivative of the eigenfunc-
tions not satisfy the mixed BCs. Such situation does not
occur for the Fourier basis as the expansion is fully indepen-
dent on m, making it perform the best. Nonetheless, the
rest of the profile is well approximated with all the bases.
Again, it is the Zernike basis that performs the least best for
the same reason discussed in the previous example, although
the results are not so different from the Bessel and
LG bases.

5. SUMMARY AND CONCLUSION
In conclusion, based on the S-L theory we have demonstrated
that optical vortices can be created with user-designed radial
amplitude profile and different topological charges. The engi-
neering of these vortices was performed by the superposition
of orthogonal eigenfunctions of optical modes. We have pre-
sented examples of vortices with staircase and radially grow-
ing sawtooth ringed intensity profiles but our approach can be
used for any kind of piecewise amplitude profile. We have in-
vestigated four different bases and found that depending on
the BCs of the desired profile one basis can be better than
the others in approximating the target profile. Three of the
bases presented here have the extra feature that can provide
physical insight on the propagation, diffraction, or imaging of
the created vortex. The scheme proposed here can easily be
extended to investigate complex field functions like those cre-
ated by the inclusion of aberrated optical systems.
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