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We present a device for measuring displacement based on the Talbot and the nonsteady photo-electromotive force
effects. The proposed device does not require any numerical signal processing since its output signal is, in appro-
priate regions, linearly related to the measured displacement. The proposed system requires an illuminating field
with a sinusoidal amplitude distribution and low fringe visibility. The dynamic range can be adjusted according to
the illuminating field spatial period or wavelength. Displacements with an estimated resolution better than 10 μm in
a dynamic range of 1.5 mm were detected using a sinusoidal amplitude grating with a period d � 100 μm. © 2013
Optical Society of America
OCIS codes: (050.1950) Diffraction gratings; (070.6760) Talbot and self-imaging effects; (120.1088) Adaptive

interferometry; (160.5140) Photoconductive materials.
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The near-field diffraction of a periodic object has the spe-
cial property of repeating itself in intensity at certain
propagation distances; this effect is widely known as
the Talbot effect [1–3]. In particular, when an amplitude
transmittance that is periodic along one axis is illumi-
nated by a monochromatic plane wave, the field distribu-
tion at the transmittance plane repeats itself at multiples
of the so called Talbot distance. The Talbot distance de-
pends only on two parameters, namely, the illuminating
wavelength (λ) and the transmittance spatial period (d).
More precisely, for plane wave illumination, the Talbot
distance is given by ZT � 2d2∕λ. The field intensity in
planes between Talbot distances remains periodic,
although not necessarily with the same period as that
of the transmittance.
Here we consider the simplest case of a one-

dimensional sinusoidal amplitude grating, which can
be described by
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where d is the grating period and m is the grating modu-
lation index. In the near-field and under plane-wave illu-
mination, the field intensity distribution at the axial
distance z from the grating plane is given by
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For low values of the grating modulation index
(m ≪ 1), it is straightforward to show that the fringe vis-
ibility (V) for the intensity pattern described by Eq. (2)
can be expressed as

V�z� ≅
				2m cos

�
2πz
ZT

�				: (3)

Hence, by measuring the fringe visibility at an obser-
vation plane of interest, the distance between the sinus-
oidal amplitude grating and the desired observation
plane can be unambiguously determined in a distance
range of one fourth the Talbot distance, e.g., from z � 0
to z � ZT∕4.

The Talbot effect has been exploited in the past for
several metrological applications, among them the meas-
urement of the refractive index [4], the measurement of
temperature [5], contouring [6], the measurement of focal
length [7], collimation testing [8], wavefront sensors [9],
and the measurement of distance and displacement
[10–14]. For this latter application, the first proposal
[10] relied on measuring the fringe contrast or visibility
(V) of the diffracted field intensity and realizing temporal
processing of the detected images. Afterward, Schirripa
Spagnolo and Ambrosini proposed a measurement
method that used either a cosine [11] or a Ronchi [12]
grating and then realized numerical Fourier processing
of the detected intensity pattern to determine the dis-
tance between the grating and the observation plane.
Finally, methods for measuring discrete distances using
the Talbot effect were proposed by Metha et al. [13] and
Dubey et al. [14]. In [13], two wavelengths were em-
ployed to measure a step-height that coincides with
the difference between the Talbot distances associated
with each of the wavelengths utilized. In [14] a super-
luminescent diode was employed to provide several
wavelengths instead of two. In all of the proposals men-
tioned above, the fields of interest were detected by a
CCD camera and numerical processing of the detected
images was required in order to determine its visibility
and hence, the propagation distance.

On the other hand, Rodriguez-Montero et al. [15]
demonstrated the use of detectors based on the non-
steady-state photo-electromotive force (photo-emf) ef-
fect for assisted Talbot interferometry.

In this work, we demonstrate a detection scheme to
measure the displacement of a mirror-like object which
combines the Talbot effect with the photo-emf-based
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detector. The information about displacement is codified
in the visibility of the diffracted field; however, in con-
trast to the previous proposals, the decodification is
achieved by direct measurement of the photo-emf
current without any image processing.
A detailed description of the detectors based on the

photo-emf effect can be found in [16,17]. The effect con-
sists in the generation of an electrical current through a
short-circuited photo-conductormaterialwhen it is illumi-
nated by a vibrating, spatially nonuniform light pattern.
The current is the result of the spatial mismatch between
the space charge electric field distribution (stored in the
photoconductor impurity centers) and the photo-excited
carriers’ distribution. This current is known as the photo-
emf current and the photo-conductive sample as the
photo-emf detector. For the simplest case of a vibrating
sinusoidal light pattern (with period d) illuminating
the detector, the photo-emf current amplitude JΩ can be
written as

JΩ � CI0δV2; (4)

where I0 is the average intensity on the detector, δ is the
amplitude of the vibrations, and the factor C depends on
electro-optical parameters of the sample, as well as on the
spatial (K) and temporal (Ω) frequencies of the illumi-
nating pattern, which are fixed in our experiment.
Equation (4) was obtained under the assumptions of
low visibility (V ≪ 1) of the light pattern and small ampli-
tude of vibrations (δ ≪ d).
Now, if the light patterns are created by the sinusoidal

amplitude grating described by Eq. (1), which is vibrating
on the direction of its grating vector, then the axial
dependence of the photo-emf current is obtained by sub-
stitution of Eq. (3) into Eq. (4):

JΩ�z� � 4m2CI0δ
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From Eq. (5) it is evident that by measuring the photo-
emf current, the distance between the vibrating sinusoidal
amplitude grating and the detector can be determined.
This property can be used formeasuring the displacement
of a mirror-like object as it is demonstrated in the follow-
ing experiment. The detection scheme proposed by us is
depicted in Fig. (1).
The input light field was generated by illuminating a

quasi-sinusoidal amplitude grating (with a period d �
100 μm) with a collimated He–Ne laser beam (λ �
633 nm), so the theoretical value for the Talbot distance
is 31.60 mm. A highly collimated beam is required since a
curvature on the illuminating field will produce Talbot
distances that are not equidistant [3]. In our experimental
set up, the degree of collimation is such that it practically
yields more than 15 equidistant self-image planes from
the grating. The vibrations of the light patterns (with
the frequency of 600 Hz) were produced by gluing the
grating to a piezoelectric transducer. The amplitude of
the vibrations measured by an accelerometer was about
15 μm, so the required condition for small δ is fulfilled. A
beam splitter directs the beam to a mirror mounted on a
translational stage and the back reflection from this

mirror is brought to the surface of a photo-emf detector.
The electrical current generated by the detector is mea-
sured as a voltage drop across the impedance of the lock-
in amplifier (100 MΩ, 25 pF). A second laser provides a
background illumination to further decrease the visibility
at the photo-emf detector plane.

The photo-emf detector was fabricated from a photo-
conductive GaAs crystal, with dimensions of 7×5 mm in
the front surface and 0.5 mm in thickness. In the
front surface, a pair of silver paint electrodes were depos-
ited in such a way that the effective interelectrode sur-
face was LX � 3 mm and LY � 5 mm. The photo-emf
detector was characterized by standard techniques
[16,17], and it was found that the current depends linearly
on the vibration amplitude δ and quadratically on the vis-
ibility V of a vibrating sinusoidal interference pattern as
predicted by Eq. (4).

Figure (2) shows the output signal from the photo-emf
detector as a function of the displacement of the mirror in
steps of 250 μm. As predicted by the theory [Eq. (5)], the
output signal varies as a cosine function of distance. Note
that because of the geometry employed, the expected
period of the cosine function is ZT∕4, and it agrees
very well with the experimentally observed value

Fig. 1. Experimental setup for measuring the displacements
of a mirror-like object by the photo-emf detector. BS, beam
splitter; M, mirror on a translation stage.
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Fig. 2. Experimental dependence of the photo-emf signal as a
function of the mirror displacement. The light power impinging
on the photo-emf detector from the grating is 0.52 mW and from
the background is 0.36 mW. The fitting values are V 0 � 510 μV,
VC � 416 μV, and ZT∕4 � 8 mm.

January 1, 2014 / Vol. 39, No. 1 / OPTICS LETTERS 105



(8.0� 0.5 mm) considering a sampling interval of 250 μm.
The maximum value of the photo-emf signal corresponds
to a mirror’s position such that the total distance traveled
by the light from the grating plane to the photo-emf detec-
tor is equal to a multiple of ZT∕2 (11 ZT in this particular
experiment) where the visibility of the diffracted field is
expected to be maximal (Eq. 5). The positions of minimal
current, i.e., positions of minimal (nominally zero) visibil-
ity, correspond to total propagation distances equal to
10.75ZT and 11.25ZT .
Note, however, that although Eq. (5) predicts a mini-

mal current equal to zero, the experimental photo-
emf signal is not zero. This is due to some contribution
of high diffraction orders, which are present in the quasi-
sinusoidal grating we employed and to the photo-emf
detector response to the spatial frequency of the illumi-
nating pattern [16,17]. Nevertheless, the minimal photo-
emf signal can reach a value close to zero by increasing
the background illumination but at the expense of reduc-
ing the signal maximal value.
Themeasured photo-emf signal VΩ can be expressed as

VΩ � V0 � VC cos
�

2πz
ZT∕4

�
; (6)

where V0 is the offset and VC is the amplitude of the sinus-
oidal component. The solid line in Fig. (2) is a fit to Eq. (6)
with V0 � 510 μV, VC � 416 μV, and ZT∕4 � 8 mm.
As shown in Fig. (2) and stated in Eq. (5), around the

total propagation distances equal to z � ��2n� 1�∕8�ZT ,
with n � 0; 1; 2…; there is a region in which the output
signal current from the photo-emf detector is linearly pro-
portional to the mirror’s displacement. Figure (3) shows
the photo-emf signal around the mirror’s position ζ �
5.25 mm in steps of 20 μm, where n � 43. The linear
relationship is clearly demonstratedwith a correlation co-
efficient of 0.999. This linear relationship holds in a range
of about 1.5 mm. The photo-emf signal proved to be very
stable and the measurements are quite reproducible,
yielding a device with high precision, as far as the illumi-
nating intensity and the piezoelectric vibration amplitude
and frequency remain constant. Indeed, the fluctuations in
the photo-emf signal are of the same order of the diameter
of the dots representing the experimental data. From this
plot it is clear that under our experimental conditions, the

proposed system can resolve displacements of the order
of 10 μm. The uncertainty in the mirror’s position deter-
mined by the translation stage is 5 μm.

The previous results were obtained employing a quasi-
sinusoidal amplitude grating to generate the above de-
scribed illuminating field; however, any technique that
generates the described illuminating field can be used.
We obtained similar results employing a Ronchi grating
in order to generate a sinusoidal input field. In this case,
we filtered the three central orders of a vibrating Ronchi
grating spectrum. We carried out this filtering by reduc-
ing the diameter of the collimated beam in such a way
that only the three central orders of the Ronchi grating
spectrum were present at the interelectrode spacing of
the photo-emf detector. The results obtained were very
similar to the ones presented above.

Finally, it can be inferred from Eq. (6) and Fig. (2) that
the dynamic range is proportional to the Talbot distance.
Therefore, since the Talbot distance is given by
ZT � 2d2∕λ, the dynamic range of the device can be in-
creased by increasing the grating period or by reducing
the illuminating wavelength. However, a trade-off exists
with the device resolution. On the one hand, increasing
the dynamic range produces smaller changes in visibility
for the same sampling interval. On the other hand, the
smallest detectable change in the photo-emf current de-
pends exclusively on the detector’s characteristics.
Hence, the device resolution is equal to the propagation
distance that produces the minimum detectable change
in the photo-emf current.

Summarizing, we have presented an electro-optical
system capable of measuring displacement of mirror-like
objects. The system design is based on the self-imaging
phenomenon and the photo-emf effect. No numerical sig-
nal processing is required since the output signal current
from the photo-emf detector is proportional to the square
of the detected field visibility. Our proposal was verified
using a GaAs photo-emf detector. In contrast to previ-
ously reported systems based on the Talbot effect, whose
response time is limited by the image acquisition time
and processing algorithms, the response time of our sys-
tem is determined by the relaxation time of the photo-emf
detector photo-conductive material, e.g., approximately
10−7 s for the crystal we employed. Twomethods for gen-
erating a sinusoidal field were employed, obtaining very
similar results. Since the Talbot distance is proportional
to the ratio of the sinusoidal field period squared over the
wavelength, the dynamic range can be modified by
changing the grating period or by changing the illumi-
nating wavelength, at the expense of modifying the de-
vice measurement resolution. Because of the inherent
adaptive properties of the detectors based on the photo-
emf effect, the proposed technique is very robust regard-
ing environmental perturbations and vibrations. In the
linear region of the dependence of the photo-emf signal
as a function of the mirror displacement, an estimated
resolution better than 10 μm in a dynamic range of
1.5 mmwas demonstrated using a quasi-sinusoidal ampli-
tude grating with a period d � 100 μm.

To the best of our knowledge, this is the first time that
the Talbot effect is employed for measuring distance in
an electro-optical processor that does not require
numerical signal processing.
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Fig. 3. Photo-emf signal around the mirror’s position
ζ � 5.25 mm. Themeasurements were taken with a lock-in time
constant of 1 s.
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