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The Kirkwood–Rihaczek quasiprobability distribution is written as a vacuum state expectation value of squeeze-like
operators and the density matrix. We do this, by writing the position eigenstates as a squeezing-like action on the vacuum.
This allows us to give a relation between the Glauber–Sudarshan and Kirkwood–Rihaczek quasiprobability distributions.

Keywords: quasiprobability distribution functions; non-classical states

1. Introduction

One of the main aims in the field of quantum optics is
the production of non-classical states (NCS), for instance
in trapped ions and quantized electromagnetic fields. Such
states have been produced recently in experiments around
the world, in particular by Wineland’s and Haroche’s groups
[1–5]. However, NCS being quantum mechanical objects,
besides being fragile because of the influence of the envi-
ronment, once a given nonclassical state has been produced,
it is important to count with mechanisms that allow their
measurement, a key problem in quantum mechanics.

Quasiprobability distribution functions (QDFs) are widely
used in quantum mechanics [6,7] and optical physics [8].
They are of great help in the visualization of such non-
classical states. For instance, one can see the compression in
phase space when squeezed states of the harmonic oscillator
[9,10] (quantized field or an ion oscillating in a trap) are
generated, or the negativity of the Wigner function [11] for
Fock states [12,13].

Therefore, via QDF it is possible to obtain information
from a system by measuring, not only some of its observ-
ables, but directly the density matrix, as it is possible to
obtain a quasiprobability function from a density matrix
or vice versa. One of the possible ways of obtaining such
information is by expressing an s-parametrized QDF in its
series representation [14]

F(α, s) = 2

π(1 − s)

∞∑
k=0

(
s + 1

s − 1

)k

〈α, k|ρ|α, k〉 (1)

with s the quasiprobability function’s parameter that indi-
cates which is the relevant distribution (s = −1 Husimi
[15], s = 0 Wigner [6,11] and s = 1 Glauber–Sudarshan

∗Email: hmmc@inaoep.mx

[16,17] distribution function), ρ is the density matrix and
the states |α, k〉 are displaced number states [18–20], that
may be experimentally produced [21].

Moreover, besides applications in classical optics [22], it
has been shown that these phase space distributions can be
expressed, in thermofield dynamics, as overlaps between
the state of the system and thermal coherent states [23],
which is probably the reason by which systems subject to
decay, may still be ‘measured’ [24,25].

Wineland’s [12] and Haroche’s [13] groups used the above
expression to measure the Wigner function (s = 0 case) of
the quantized motion of an ion and a quantized cavity field,
respectively. There is somehow already a recipe in the above
equation to obtain a quasiprobability distribution function
from experimental data: let us write Equation (1) as

F(α, s) = 2

π(1 − s)

∞∑
k=0

(
s + 1

s − 1

)k

〈k|D†(α)ρD(α)|k〉,

(2)

where D(α) = exp(αa† − α∗a), with a and a† the
annihilation and creation operators, respectively, is the
Glauber displacement operator. Note that, in order to obtain
a quasiprobability distribution function we need to do the
following: displace the system by an amplitude α and then
measure the diagonal elements of the displaced density
matrix. These applications in the reconstruction of signals
[8] in the classical regime and reconstruction of quantum
states of different systems such as ions [12,26] or quantized
fields [13] in the quantum regime is a fundamental property
that makes them an invaluable tool as a measuring device.

However, as it may not be always possible to reconstruct
the Wigner function due, for instance, to the interaction of
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the system with its environment [24,25], then one has to rely
on s-parametrized QDFs for the measurement of quantum
states. It is of importance to look for new elements that could
contribute to the measurement of a wavefunction when the
above mentioned mechanisms may not be used. Operators
used in the reconstruction process are always Hermitian,
therefore real values are always handled, producing real
QDFs. However, there is a class of QDFs that is complex
and still has the same amount of information as the real
Wigner, Glauber–Sudarshan or Husimi distribution func-
tions, namely the Kirkwood–Rihaczek function [27–30].
Along the lines of using QDF to perform the wavefunction
measurement, let us think of a hypothetical, but plausible
scenario where measurements of observables, position, mo-
mentum, let us say, do not guide us to the reconstruction
of a QDF. However, via their manipulation, addition or
subtraction, it is posible to ‘measure’ non-Hemitian opera-
tors such as creation or annihilation operators. Indeed the
result of such manipulation would derive in complex val-
ues as the operator measured is non-observable and there-
fore non-Hermitian. Then connections for reconstruction
of complex QDFs could be the answer. In this contribu-
tion we would like to re-introduce this class of complex
quasiprobability distribution functions and use their relation
to the Wigner function to show how it may be related to the
Glauber–Sudarshan P-function. This will be possible as we
express the Kirkwood–Rihaczek function as an expectation
value in terms of the vacuum.

2. Cohen-class distribution functions

A function of the Cohen class is described by the general
formula [31]

WC = 1

2π

∫∫∫
φ(y + 1

2 x ′)φ(y − 1
2 x ′)k(x, u, x ′, u′)

× exp[−i(ux ′ − u′x + u′y)] dx dx ′ du′ (3)

and the choice of the kernel k(x, u, x ′, u′) selects one par-
ticular function of the Cohen class. The Wigner function,
for instance arises for k(x, u, x ′, u′) = 1, whereas the am-
biguity function is obtained for k(x, u, x ′, u′)2πδ(x − x ′)
δ(u − u′).

2.1. Wigner function

Probably the best known QDF is the Wigner function. It
may be written in two forms: series representation (see for
instance [14]), and from (3), as the integral representation

W (q, p) = 1

2π

∫
du exp(iup)

〈
q + u

2

∣∣∣ ρ ∣∣∣q − u

2

〉
. (4)

Wigner introduced this function W (q, p), known now as
his distribution function [6,11] which contains complete
information about the state of the system as the density
matrix for a pure state is given by ρ = |ψ〉〈ψ |.

The Wigner function may be written also, in terms of the
(double) Fourier transform of the characteristic function, as

W (α) = 1

4π2

∫
exp(αβ∗ − α∗β)C(β) d2β, (5)

with α = (q + ip)/21/2 and where C(β) in terms of anni-
hilation and creation operators is given by

C(β) = Tr {ρ exp(βa† − β∗a)}, (6)

also known as the ambiguity function in classical optics
[32].

3. The Kirkwood–Rihaczek quasidistribution function

Now we turn our attention to a lesser known distribution, the
Kirkwood–Rihaczek function, which may be written using
the notation above as [33]

K (β) =
∫

d2α exp(βα∗ − β∗α) exp

(
α2 − α∗2

4

)
C (α) ,

(7)
and may also be expressed as the double Fourier transform

K (X, Y ) =
∫

du dv exp(−iuY ) exp(ivX)Tr

×{ρ exp(ivq̂) exp(iu p̂)}, (8)

where we have defined β = (X +iY )/21/2 and for the trace,
that may be taken in many forms, we use

Tr {ρA} = 〈ψ |A|ψ〉 =
∫ ∞

−∞
dq〈pq|ψ〉〈ψ |A|q〉p, (9)

where we have added the subscript p to emphasize the use
of position eigenstates.

We will now do an analysis similar to the one done in [14].
We relate the Kirkwood–Rihaczek function to the Wigner
function by using (7), via the following exponential of
derivatives

K (β) = exp

(
−1

4

∂2

∂2β

)
exp

(
1

4

∂2

∂2β∗

)
W (β) . (10)

In the above equation we will use a non-integral expression
for the Wigner function [14]

W (β) = Tr
[
(−1)a

†a D† (β) ρD (β)
]
. (11)

Rearranging the displacement operators and the parity op-
erator, we obtain

W (β) = Tr
[
(−1)a

†a ρD (2β)
]
, (12)

where we have used the trace property Tr (AB) = Tr (B A)
and the following identity (−1)a

†a D† (β)= D (β) (−1)a
†a .

Now we use the factorized form of the Glauber
displacement operator [16] D (2β) = e−2|β|2 exp(2βa†)

exp(−2β∗a) to obtain

W (β) = Tr
[
(−1)a

†a ρ exp(−2 |β|2)
× exp(2βa†) exp(−2β∗a)

]
. (13)
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Therefore, we have that the Kirkwood–Rihaczek function
may be written as

K
(
β, β∗) = exp

(
−1

4

∂2

∂2β

)
exp

(
1

4

∂2

∂2β∗

)
W
(
β, β∗)

= Tr

[
(−1)a

†a ρ exp

(
−1

4

∂2

∂2β

)

× exp

(
1

4

∂2

∂2β∗

)
D (2β)

]
. (14)

The calculation of the exponential of derivatives of the
Glauber operator will be tedious but straightforward. We
will follow [34] for the calculations

exp

(
1

4

∂2

∂2β∗

)
D (2β)

= exp(−β2) exp
[
2β
(

a† + a − β∗)]
× exp(a2) exp(−2β∗a). (15)

By using the expression for the generating function for
Hermite polynomials [35]

exp(−t2 + 2t x) =
∞∑

k=0

Hk (x)
tk

k! (16)

we can express the above equation as

exp

(
1

4

∂2

∂2β∗

)
D (2β) =

∞∑
k=0

Hk

(
a† + a − β∗) βk

k!
× exp(a2) exp(−2β∗a).

(17)

From the above equation, it is easy to note that

∂2n

∂β2n

∞∑
k=0

Hk (x)
βk

k! =
∞∑

k=0

Hk+2n (x)
βk

k! (18)

such that

exp

(
−1

4

∂2

∂2β

)
exp

(
1

4

∂2

∂2β∗

)
D (2β)

=
∞∑

n=0

∞∑
k=0

(
− 1

4

)n
(β)k

n!k! Hk+2n

(
a† + a − β∗)

× exp(a2 − 2β∗a). (19)

Now we use the integral form of the Hermite polynomials
[35]

Hp (x) = 2p

π1/2

∞∫
−∞

(x + it)p exp(−t2) dt (20)

to obtain

K
(
β, β∗)

= exp(−β∗2) exp(−2ββ∗)
π1/2

×
∞∫

−∞
dx

∞∫
−∞

dt exp
[(

−2(21/2)x + 2β∗ + 2β
)

it
]

× exp(−2x2) exp
[
2(21/2)x

(
β∗ + β

)]
×p 〈x | exp(a2) exp(−2β∗a) (−1)a

†a ρ |x〉p

(21)

by using
∞∫

−∞
exp(−iyt) dt = 2πδ (y) . (22)

By setting y = 2
√

2x − 2β∗ − 2β we have

K
(
β, β∗) = 2π1/2 exp(−β∗2) exp(−2ββ∗)

×
∞∫

−∞
dxδ

(
2(21/2)x − 2β∗ − 2β

)

× exp(−2x2) exp
[
2(21/2)x

(
β∗ + β

)]
× 〈

px
∣∣ exp(a2) exp(−2β∗a) (−1)a

†a ρ |x〉p .

(23)

Making use of the identity δ (αx) = δ (x)/|α| we finally
obtain

K
(
β, β∗) =

(π
2

)1/2
exp(β2 − β∗2)

× 〈
p X
∣∣ exp

[(
a − β∗)2] (−1)a

†a ρ |X〉p .

(24)

The position eigenstate |X〉p may be written as

|X〉p =
∞∑

n=0

|n〉〈n |X〉p (25)

or

|X〉p =
∞∑

n=0

ψn(X)|n〉 (26)

with

ψn(X) = exp(−X2/2)Hn(X)(
2nπ1/2n!)1/2

such that the position eigenstate may we re-written as

|X〉p = exp(−X2/2)

π1/4

∞∑
n=0

Hn(X)

2n/2n! a†n|0〉, (27)
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which may be added via the generating function for Hermite
polynomials (16) to give

|X〉p = exp(−X2/2)

π1/4
exp

(
−a†2

2
+ 21/2a† X

)
|0〉. (28)

In the above equation the application of an operator to the
vacuum produces the position eigenstate.1

By using this expression in (24) we can write

K
(
β, β∗) = exp(β2 − X2)

21/2

×〈0| exp

(
a2

2
− 21/2iY a

)
(−1)a

†a

×ρ exp

(
−a†2

2
+ 21/2a† X

)
|0〉 , (29)

or

K
(
β, β∗) = exp(β2 − X2)

21/2

×〈0| exp

(
a2

2
+ 21/2iY a

)

×ρ exp

(
−a†2

2
+ 21/2a† X

)
|0〉 , (30)

that may be finally written in terms of coherent states

K (β, β∗) = exp(β2 + Y 2)

21/2
〈−21/2iY | exp

(
a2

2

)
ρ

× exp

(
−a†2

2

)
|21/2 X〉. (31)

We can relate the Kirkwood function to the Glauber–
Sudarshan P-function [16,17] by using the relation ρ =∫

d2αP(α)|α〉〈α|, i.e.

K (β, β∗) = exp(β2 + Y 2)

21/2

∫
d2αP(α) exp

(
α2 − α∗2

2

)
×〈−21/2iY |α〉〈21/2 X |α〉, (32)

or

K (β, β∗)

= exp(iXY )

21/2

∫
d2αP(α) exp

(
α2 − α∗2

2
− |α|2

)

× exp
[
21/2(Xα∗ − iYα)

]
. (33)

Therefore we have written the Kirkwood–Rihaczek func-
tion as an expectation value in terms of the vacuum state, just
as the Q-function may be written as a coherent states expec-
tation value, the Wigner and Glauber–Sudarshan functions
in terms of a series of displaced number states expecta-
tion values [14], and relate it to the Glauber–Sudarshan
P-function.

4. Conclusions

We have written the position eigenstates as a ‘displacement’
or ‘squeezing’of the vacuum state. In fact it is a non-unitary
squeeze-like operator applied on the vacuum, which is not
surprising as position eigenstates are not normalizable. This
has allowed us to use a former expression for the Kirkwood–
Rihaczek distribution function to write it as an expectation
value in terms of the vacuum state.This made it easy to relate
this function to the Glauber–Sudarshan P-function [36].

Note
1. Note that one can write exponentials of annihilation operators

just before the vacuum.
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