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Abstract. We present the validation for Ronchigram recovery with the ran-
dom aberrations coefficients (ReRRCA) algorithm. This algorithm was pro-
posed to obtain the wavefront aberrations of synthetic Ronchigrams, using
only one Ronchigram without the need for polynomial fits or trapezoidal
integrations. The validation is performed by simulating different types of
Ronchigrams for on-axis and off-axis surfaces. In order to validate the pro-
posed analysis, the polynomial aberration coefficients that were used to
generate the simulated Ronchigrams were retrieved. Therefore, it was
verified that the coefficients correspond to the retrieved ones by the algo-
rithm. The results show that the ReRRCA algorithm retrieves the aberra-
tion coefficients from the analyzed Ronchigram with a maximum error of
9%. © 2013 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE
.52.5.053606]
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1 Introduction
During the polishing process of an optical surface is impor-
tant to know the evolution of the shape of the surface that is
manufactured, i.e., the surface being tested. This initial sur-
face generally has small irregularities (peaks and valleys)
that, so far, can only be quantified with interferometric test-
ing1; therefore, by performing such tests it is possible to
know how close it is to the ideal surface to be manufactured.
In almost all manufacturing processes one of the most com-
monly used tests in optical workshops that assess the quality
of the surface is the classical Ronchi test; this is because the
versatility and flexibility of this test are very broad.1,2

In the literature we can find several procedures for inter-
ferogram analysis by using genetic algorithms,3–5 which
describe the procedure for finding the phase of a noisy inter-
ferogram. However, the genetic algorithm is a heuristic
optimization method. In this paper, we propose an alternative
technique to the genetic algorithms by minimizing a defined
merit function. The proposed algorithm does not have similar
stages as those used in a genetic algorithm: (initial popula-
tion crosses, mutation, etc.). Instead there are two main
cycles, where the first cycle is heuristic due the random func-
tion used for the variation of each coefficient, while
the second cycle is not heuristic because the variation of
the coefficients is controlled. By these reasons we cannot
directly compare the proposed algorithm with a genetic algo-
rithm. The proposed algorithm is mainly applied to a
Ronchigrams analysis, where it is only necessary to analyze
one Ronchigram without the need of polynomial fit or trap-
ezoidal integrations as in conventional Ronchigram analysis.

For optical surface metrology it is necessary to obtain
accurate and reliable measurements and have a good method
of analysis. The importance of this work lies in the genera-
tion of a new technique for quantitative analysis. Another

aspect developed in this paper is to have a computer program
for Ronchigram analysis.

1.1 Ronchi Test

A Ronchi test is a powerful method used to measure aberra-
tions in optical systems, since the surface errors can be esti-
mated from the deviation of the observed fringe pattern on
the exit pupil and along the polishing work a comparison is
made against a previously calculated theoretical pattern.1,2

The fringes in the Ronchi test are usually studied with
geometrical theory, where the fringes in the Ronchigram
are the result of the ray deviations from an ideal path. This
is caused by errors in the slopes of the surface being tested;
see Fig. 1. From the point of view of the wave theory, the
fringes are produced by the interference between diffraction
orders generated by the Ronchi ruling. Therefore, this test
can be seen as a lateral shear interferometer, where the opti-
cal path difference (OPD) that generates the interference pat-
tern is associated with the original wavefront slopes instead
of a wavefront directly, as in others interferometers.1,2

1.1.1 On-axis Ronchigrams

Considering the typical geometry in the Ronchi test for
analysis of convergent wavefronts, the transmittance for a
ruling can be written as2

MðxrÞ ¼ 1þ cos

�
2πxr
d

− β

�
; (1)

where d is the period of the ruling and β is a lateral shear
parameter determined by the initial ruling position. The
Ronchi ruling is usually fabricated with binary transmittance,
nonsinusoidal, so that the binary transmittanceMðxrÞ is gen-
erated by assigning a value of zero ifMðxrÞ ≤ 1 or assigning
a value of one if MðxrÞ > 1.0091-3286/2013/$25.00 © 2013 SPIE
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The irradiance Iðx; yÞ at any point of the Ronchigram can
be understood as the irradiance associated to an interfero-
gram and can be expressed as the OPD between the two
sheared wavefronts. If a light detector is positioned on the
observation plane, a distorted irradiance pattern will result
due to the wavefront aberrations,2 given by

Iðx; yÞ ¼ aðx; yÞ þ bðx; yÞ cos
�
2πOPD

λ

�
þ cðx; yÞ; (2)

where aðx; yÞ and bðx; yÞ are the background illumination
and local contrast, respectively, the function cðx; yÞ corre-
sponds to the noise introduced into the interferogram, λ is
the wavelength of light used, while the OPD in the lateral
shear interferometer corresponds to the difference between
the original wavefront and the sheared one1,6,7 and is
equal to

OPD ¼ Wðx; yÞ −Wðxþ Δx; yÞ; (3)

where Δx is the lateral shear of the first diffraction order in
the x direction, Wðx; yÞ represents the original wavefront
which can be expressed by a polynomial function (i.e.,
Zernike, Seidel, Kingslake, etc.), or by the sagitta difference
between the conical surface under test (zðx; yÞ and the oscu-
lating sphere (zoðx; yÞ),1 then

2Wðx; yÞ ¼ zðx; yÞ − zoðx; yÞ. (4)

The sagitta can be described by

z ¼ cρ2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðkþ 1Þc2ρ2

p ; (5)

where c is the inverse of the radius of curvature, ρ2 are the
spatial coordinates of the pupil (x2 þ y2), and k is the conic
constant of the surface according to Table 1.

Substituting Eq. (3) into Eq. (2) we obtain an equation
that describes the two-dimensional distribution of the irradi-
ance for a lateral shear interferometer, which is the same
equation for the irradiance produced in the classical Ronchi
test,

Iðx; yÞ ¼ aðx; yÞ þ bðx; yÞ cos
�
2πðWðx; yÞ−WðxþΔx; yÞÞ

λ

�
þ cðx; yÞ (6)

with the factor Δx equal to

Δx ¼ λr
d
; (7)

where r is the paraxial radius of curvature of the surface
under test, d is the period of the Ronchi ruling, and λ is
the wavelength used, in our case λ ¼ 0.55 μm.

1.1.2 Off-axis Ronchigrams

The off-axis surfaces play an important role in optics, espe-
cially in the design of instruments, such as spectrometers,
light concentrating systems, etc., allowing unrestricted
access to the focal point at certain deviation angle.8,9 These
surfaces have been used in general to focus an incident beam
of light outside the beam’s path, eliminating transmission
losses and diffraction effects.

Following the procedure described by Cardona et al.8 and
Izazaga et al.9 we can find the equations for the sagitta in
power series, for an either on-axis or off-axis conic section.
These expressions are derived by applying transformations
to the coordinate systems, by rotation and translation, in
order to align this new coordinate system with the normal
at the central point of the off-axis section (see Fig. 2).

Fig. 1 Ronchi test basic configuration.

Table 1 Values of conic constants for conic surfaces.

Type of conic surfaces Conic constant value (k )

Hyperboloid k < −1

Paraboloid K ¼ −1

Ellipsoid rotated about its major axis −1 < k < 0

Sphere K ¼ 0

Ellipsoid rotated about its minor axis k > 0

Optical Engineering 053606-2 May 2013/Vol. 52(5)

Aguirre-Aguirre et al.: Algorithm for Ronchigram recovery with random aberrations coefficients



Finally, applying the necessary transformations and expand-
ing the resulting terms in power series, the equation for the
sagitta is

z ≈
1

2
cδðδ2x2 þ y2Þ þ 1

2
c2δ2kx sin θ cos θðδ2x2 þ y2Þ

þ 1

2
c 3 δ3ðδ2x2 þ y2Þðδ2bð1þ 3cδkx sin θ cos θÞx2

þ bð3cδkx sin θ cos θÞy2Þ; (8)

where b ¼ 1þ k cos2 θ and δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k sin2 θ

p
. A similar

procedure can be done for on-axis conic surface [see Eq. (5)],
and obtain an equation with the same degree of approxima-
tion, as

ZA ≈
1

2
c 0ðx2 þ y2Þ þ 1

8
ðk 0 þ 1Þc 0ðx2 þ y2Þ2: (9)

The sagitta difference between on-axis and off-axis sec-
tions is 2Wðx; yÞ ¼ ZA − z.

Transforming the coordinates system to a cylindrical one
(x ¼ ρ cos ϕ, y ¼ ρ sin ϕ), and developing the full polyno-
mial for the wavefront Wðx; yÞ, 8,9 then

Wðx; yÞ ¼ α20ρ
2 þ α22ρ

2 cos 2ϕþ α31ρ
3 cos ϕ

þ α33ρ
3 cos 3ϕþ α40ρ

4 þ α42ρ
4 cos 2ϕ

þ α44ρ
4 cos 4ϕþ : : : ; (10)

where the aberration coefficients are defined by

α20 ¼
c
2

�
c 0

c
−
δ

2
ð1þ δ2Þ

�
focus;

α22 ¼ 1∕4cδð1 − δ2Þ astigmatism;

α31 ¼ −1∕4c2δ2k sin θ cos θð1þ δ2Þ coma;

α33 ¼ 1∕4c2δ2k sin θ cos θð1 − δ2Þ trefoil;

α40 ¼
c3

8

�ðk 0 þ 1Þc 03

c3
−
1

4
δ3bð1þ δ2Þ2 − 1

8
δ3bðδ2 − 1Þ2

�
spherical;

α42 ¼ −1∕16c3δ3bðδ4 − 1Þ� sec :astigmatism;

α44 ¼ −1∕64c3δ3bðδ2 − 1Þ2 tetrafoil: (11)

2 Ronchigram Analysis with ReRRCA Algorithm
For the Ronchigram analysis of both on-axis and off-axis
surfaces, the Ronchigrams recovery with random aberrations
coefficients (ReRRCA)7 follow the process shown in the
flowchart of Fig. 3.

2.1 Step 1: Reading the Ronchigram and Fringe
Skeletonizing

The first step is skeletonizing the Ronchigram to be analyzed
in order to work only with the most important features of the
image, i.e., working with Ronchigram’s fringe centroids. It is
noteworthy that the skeletonizing process is the only method
for image enhancement that is used for the present analysis.

The procedure for fringe skeletonizing is scanning each
row of the fringes image, by finding the maxima correspond-
ing to each fringe; this recognition is to find the positive and
negative slopes of each irradiance profile.

2.2 Step 2: W ðx;yÞ Proposed and Ronchigram
Generation

The recovery of the aberration coefficients for the third-order
polynomial of the synthetic wavefront is achieved by
assigning random values to the aberration coefficients asso-
ciated with the OPD of the recovered wavefronts. The algo-
rithm has two main cycles that are described below.

Fig. 2 Off-axis conic section described by its basic parameters.
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2.2.1 Approximation cycle

This cycle is responsible for finding the closest aberration
coefficients to the solution for synthetic wavefront. This is
done by generating as many Ronchigrams as desired, with
random coefficients. In our analysis were generated 8000;
these Ronchigrams are generated between an established
range, in our case −2λ to 2λ (λ ¼ 5.5 × 10−5 cm), since
the generated functions are smooth. From the comparison
between the synthetic and recovered Ronchigram’s coeffi-
cients, an root mean square (rms) value is obtained and a
new analysis cycle can be started.

After having the fringe skeleton of the Ronchigram tested,
each maximum position is found line by line, thus generating
a matrix called Esynthetic, where the number of rows corre-
sponds to the lines in the analyzed Ronchigram, while the
number of columns corresponds to the number of maximum
encountered by analyzed line, and a matrix is found as

Esynthetic ¼

0
BBB@

E11 E12 · · · E1n

E21 E22 · · · E2n

..

. ..
. . .

. ..
.

Em1 Em2 · · · Emn

1
CCCA: (12)

Every time you generate a new simulated Ronchigram,
the positions of the maxima are found, thus generating
another matrix called Grecovered.

Grecovered ¼

0
BBB@

G11 G12 · · · G1n

G21 G22 · · · G2n

..

. ..
. . .

. ..
.

Gm1 Gm2 · · · Gmn

1
CCCA: (13)

With both matrix Esynthetic andGrecovered, the rms difference is
calculated by means of

rms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
j¼1

Xn
i¼1

ðEji − GjiÞ2
vuut ; (14)

where n is the number of fringes measured andm is the num-
ber of lines used.

The Ronchigram generated that has the least rms will be
taken as recovered Ronchigram by ReRRCA algorithm or
the resulting Ronchigram from the analysis.

2.2.2 Better adjustment for the rms value (limits
reduction cycle)

This cycle is responsible for optimizing the coefficients dif-
ference rms found by the approximation cycle. This step is
done in the following way; select one of the coefficients and
change it while maintaining the other coefficients fixed, as
shown in Fig. 4.

A variable Q is defined that takes values equal to 1 × 10n,
where n ¼ 1; 2; 3; : : : , p; and p is the number of significant
digits of each coefficient. Whenever Q takes a value (either
positive or negative) the rms is calculated; if this is lower
than the previous rms, the coefficient takes the new value
and the cycle begins again; in the case that the rms is greater,
the cycle is repeated with the old value of the coefficient.

3 Validation for ReRRCA
For the ReRRCA algorithm validation, different types of
Ronchigrams were simulated, including on-axis and off-
axis optical surfaces. This is done in order to check that
the retrieved aberration polynomial coefficients, generated
with the simulated Ronchigrams, correspond to the coeffi-
cients of the analyzed Ronchigram. The Ronchigrams gen-
erated have a size of 501 × 501 pixels.

Fig. 3 Flow chart of the proposed algorithm.

Optical Engineering 053606-4 May 2013/Vol. 52(5)

Aguirre-Aguirre et al.: Algorithm for Ronchigram recovery with random aberrations coefficients



3.1 Synthetic Ronchigrams of a Spherical Surface

The first step in the validation of the algorithm was generat-
ing a synthetic Ronchigrams of a spherical surface, which
only present Gaussian noise and defocus effect [Fig. 5(a)
and 5(b)]. This is because it is well known that for a perfect
spherical surface with a defined focus, only straight fringes
appear in the irradiance pattern, with parallel and equally
spaced fringes, and with the same number of fringes in
both x and y direction, as shown in Fig. 5(a) and 5(b).

The Ronchigrams recovered by the proposed algorithm
are shown in Fig. 5(c). and 5(d). The aberration polynomial
coefficients retrieved for these same images are described in
Table 2.

It is noteworthy that the focus coefficients remain con-
stant for the simulated and recovered Ronchigrams. Given

that this value of focus may remain constant since it only
depends on the position of the grating l 0 and the paraxial
radius of curvature paraxial r of the surface under test as

Focus ¼ l 0

r2
: (15)

For all retrieved Ronchigrams in this paper an rms value
less than 10 was obtained.

3.2 Synthetic Ronchigrams of an On-Axis Hyperbolic
Surface

In this subsection, a hyperbolic surface with radius of curva-
ture of 53.3 cm, 7.32 cm diameter and a conic constant equal
to −3.65, the grid classical Ronchi that was used was of

Fig. 4 Diagram showing the operation of the limits reduction cycle.

Fig. 5 Images (a) and (b) are noise simulated Ronchigrams, introducing only focus, the fringes are parallels to the x and y axes, respectively.
Images (c) and (d) are Ronchigrams recovered by the proposed algorithm.
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80 lpi, at a distance of 53 cm from the vertex of the mirror.
The aberrations of the on-axis hyperbolic wavefront are
focus and spherical; this latest can be calculated for any
surface10 as

Spherical ¼ jkj
8r3

: (16)

To calculate the absolute impact in the surface error, we
can calculate a surface rms by means of

rmssurf ¼
1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
½Wðx; yÞsimulated −Wðx; yÞrecovered�2

s
:

(17)

The results obtained of the on-axis hyperbolic surface are
shown in Fig. 6(a) and 6(b). The coefficients retrieved by the
proposed algorithm are shown in Table 3. As shown, the
recovered coefficients by ReRRCA are satisfactory because
the maximum absolute error in the coefficients is 1.1×
10−3λ, where the difference between the synthetic and the
recovered surfaces gives an rmssurf of 4.4 × 10−3λ.

We simulated another hyperbolic surface with a radius of
curvature of 60 cm, 15 cm diameter and a conic constant
equal to −3.65, the classical Ronchi ruling used was of
50 lpi, at a distance of 62.1 cm from the vertex of the mirror.
The results obtained are shown in Fig. 7(a) and 7(b). The

coefficients retrieved are shown in Table 4. The maximum
absolute error in the coefficients is 2.25 × 10−3λ and an
rmssurf of 8.52 × 10−4λ. Figure 8 shows the behavior of
the proposed algorithm when the merit function is minimized
during the optimization process; it also shows the behavior of
the two main cycles of ReRRCA where the first cycle (of
approximation) finds coefficients close to the solution coef-
ficients. This is because it includes a random function, so the
probability that in one trial all generated coefficients are
equal to the analyzed coefficients is almost null, while the

Table 2 Comparison between the synthetic Ronchigram coefficients and the recovered by the algorithm.

Aberration Synthetic x , y Recovered x Recovered y Difference at x Difference at y

Spherical 0.0λ 0.002λ 0.003λ 0.002λ 0.003λ

Coma 0.0λ 0.003λ 0.004λ 0.003λ 0.004λ

Astigmatism 0.0λ 0.002λ 0.003λ 0.002λ 0.003λ

Focus 17.128λ 17.128λ 17.128λ 0.0λ 0.0λ

Fig. 6 (a) Synthetic Ronchigram of an on-axis hyperbolic surface (inside of focus), (b) Ronchigram recovered by Ronchigrams recovery with
random aberrations coefficients (ReRRCA).

Table 3 Comparison between the coefficients of an on-axis simu-
lated Ronchigram (inside of focus) and the recovered by
Ronchigrams recovery with random aberrations coefficients
(ReRRCA).

Aberration

Synthetic
(calculated by

formula)
Recovered by

ReRRCA
Absolute
error

Spherical 5.58 × 10−2λ 5.44×10−2λ 6.0 × 10−4λ

Coma 0.0λ 1.1 × 10−3λ 1.1 × 10−3λ

Astigmatism 0.0λ 1.0 × 10−3λ 1.0 × 10−3λ

Focus 1.504λ 1.504λ 0.0λ
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second cycle (limits-reduction), which modifies the coeffi-
cients in a controlled manner, finds the closest approximation
to the final solution.

To obtain statistical results of the behavior of the proposed
algorithm we analyze this inside of focus Ronchigram in sev-
eral trials. Table 5 shows the mean and standard deviation (σ)
of the aberration coefficients after 11 trials.

3.3 Synthetic Ronchigrams of an Off-Axis Hyperbolic
Surface

For the simulation of the Ronchigrams of an off-axis hyper-
bolic surface, the Ronchi classical ruling was placed at
29.5 cm from the vertex of the mirror, while the surface
was simulated with 4 cm of diameter, 30 cm paraxial radius
of curvature, 10 cm off-axis and a conic constant equal to
−4.5. Figure 9(a) and 9(b) is the analyzed-synthetic and
the recovered by ReRRCA Ronchigrams, respectively.
The coefficients retrieved by the proposed algorithm are
shown in Table 6, where it can be seen that the higher coef-
ficients difference corresponds to astigmatism, and rmssurf
with 0.1245λ.

The coefficients of the synthetic Ronchigrams were cal-
culated using Eq. (11), where all these coefficients depend on
the characteristics of the mirror and the measured value from
the optical axis of the parent surface to the center of the off-
axis surface.

We simulated a Ronchigram with closed fringes of a
hyperbolic surface with an off-axis distance of 6 cm (see
Fig. 10), with radius of curvature of 60 cm, 10 cm diameter
and a conic constant equal to −3.5, the classical Ronchi rul-
ing used was of 50 lpi, at a distance of 64 cm from the vertex
of the mirror.

Table 7 shows the results from the analysis of a
Ronchigram with closed fringes where the maximum per-
centage error is 10.22 giving an rmssurf of 9.6 × 10−3λ.
Figure 11 shows the behavior of the proposed algorithm

Fig. 7 (a) Synthetic Ronchigram of an on-axis hyperbolic surface (outside of focus), (b) Ronchigram recovered by ReRRCA.

Table 4 Comparison between the coefficients of an on-axis simu-
lated Ronchigram (outside of focus) and the recovered by ReRRCA.

Aberration

Synthetic
(calculated
by formula)

Recovered by
ReRRCA

Absolute
error

Spherical 3.64 × 10−2λ 3.66 × 10−2λ 2.0 × 10−4λ

Coma 0.0λ 2.25 × 10−3λ 2.25 × 10−3λ

Astigmatism 0.0λ 1.96 × 10−3λ 1.96 × 10−3λ

Focus 5.303λ 5.303λ 0.0λ

Fig. 8 Behavior of the rms value for the on-axis hyperbolic surface
(outside of focus).

Table 5 Mean and standard deviation of the aberration coefficients
for several trials of the proposed algorithm for the on-axis case.

Coefficient Mean (λ) Standard deviation (σ)

Spherical 3.664 × 10−2 2.1 × 10−4

Coma −1.99 × 10−3 2.48 × 10−3

Astigmatism 9.10 × 10−3 1.14 × 10−2

rms 4.46471 0.25746
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when the merit function is minimized during the optimiza-
tion process.

Table 8 shows the mean and standard deviation of the
aberration coefficients for this case after 11 trials.

4 Error Produced by the Ruling Position
This section will discuss the error introduced in retrieving the
aberration coefficients for the analyzed Ronchigrams with an
error in the ruling position.

An error in the focus position reduces or increases the
number of fringes present in the Ronchigram. Therefore,
this error introduces an increase or decrease in the coefficient
of astigmatism, given because the coefficient of astigmatism
causes a similar effect on the Ronchigrams; in other words,
when there is an error in the focus’s coefficient, the astigma-
tism coefficient is modified in order to compensate this error.

Analyzing a Ronchigram generated by the interference
produced by the diffraction orders diffracted along the x
axis, the behavior of the error introduced at astigmatism
is in the form

Fig. 9 (a) Synthetic Ronchigram of an off-axis hyperbolic surface (inside of focus), (b) Ronchigram recovered by ReRRCA.

Table 6 Comparison between the coefficients of an off-axis simu-
lated Ronchigram (inside of focus) and the recovered by ReRRCA.

Aberration

Synthetic
(calculated by
the formula) (λ)

Recovered
by

ReRRCA (λ)
Percentage
error (%)

Focus −9.2163 −8.5253 7.49

Astigmatism 41.2372 39.8894 3.51

Coma 6.6134 6.2625 5.31

Trefoil −1.3227 −1.2218 7.63

Spherical 0.1869 0.1770 5.29

Sec. Astig. −0.0403 −0.0380 5.71

Tetrafoil 0.0020 0.0019 5.00

Fig. 10 (a) Synthetic Ronchigram of an off-axis hyperbolic surface (outside of focus), (b) Ronchigram recovered by ReRRCA.
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Δα22 ¼ −Δα20: (18)

While analyzing the Ronchigram with the diffraction
orders along the y axis the error introduced is described by

Δα22 ¼ −
Δα20
3

: (19)

These relationships can be seen in Fig. 12, where the solid
line represents the analysis in the x direction, and the dashed
line is for the y direction.

4.1 Analysis Introducing a Δα22
To test the focusing effect, two synthetic Ronchigrams are
used without noise just introducing astigmatism aberration
and focusing effect. The analysis of both Ronchigrams intro-
duced a focusing error by −λ; the results of this analysis are
presented below.

As seen in Fig. 13, the Ronchigrams recovered by the
algorithm are exact (this is with rms ¼ 0), but the coefficient
of astigmatism are greater (Table 9). The absolute error of 1λ
in the focus’s coefficient of the Ronchigrams correspond to
an rmssurf on the surface of 9.04 × 10−2λ, for Fig. 13(a),
Fig. 13(b) gives an rmssurf of 3.04 × 10−2λ.

Note that Eqs. (17) and (18) are kept identical for analyz-
ing Ronchigrams with different coefficients for spherical
and coma.

5 Conclusions
This paper presents an algorithm for obtaining the aberration
coefficients of a synthetic-proposed wavefront from a recov-
ered wavefront Ronchigram. It has been shown that for the
recovery of the synthetic wavefront only one Ronchigram is
required in the analysis, given that a Ronchigram can only be
generated by a fixed wavefront. This means that for a
Ronchigram with a fixed focus, there is only one wavefront
that satisfies the synthetic Ronchigram.

In the case of the analysis for on-axis conical surfaces the
maximum absolute error observed in retrieving the aberra-
tion coefficients was 4 × 10−3λ; while for off-axis surfaces
the maximum absolute error observed was less than 0.1λ.

Table 7 Comparison between the coefficients of an off-axis simu-
lated Ronchigram (outside of focus) and the recovered by ReRRCA.

Aberration

Synthetic
(calculated by
the formula) (λ)

Recovered
by ReRRCA (λ)

Percentage
error (%)

Focus −4.999 −4.824 3.50

Astigmatism 2.518 2.465 2.11

Coma 0.821 0.811 1.24

Trefoil −1.41 × 10−2 −1.32 × 10−2 6.38

Spherical 3.43 × 10−2 3.29 × 10−2 4.08

Astig. Sec. −8.192 × 10−4 −9.030 × 10−4 10.22

Tetrafoil 3.522 × 10−6 3.860 × 10−6 9.59

Fig. 11 Behavior of the rms value for the off-axis hyperbolic surface
(outside of focus).

Table 8 Mean and standard deviation of the aberration coefficients
for several trials of the proposed algorithm for the off-axis case.

Coefficient Mean (λ) Standard deviation (σ)

Astigmatism 2.10412 0.205601

Coma 0.82375 0.013870

Trefoil −1.7773 × 10−2 4.48 × 10−3

Spherical 3.2808 × 10−2 8.491 × 10−3

Sec. Astig. −6.9932 × 10−4 1.86 × 10−4

Tetrafoil 3.31182 × 10−6 2.613 × 10−6

rms 14.2849407 6.12972

Fig. 12 Error introduced in the astigmatism coefficient depending
upon an increase in the focusing effect.
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Finally, the analysis of the introduced error in recovering
the aberration coefficients for the synthetic wavefront was
analyzed as due to the Ronchi ruling position.
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