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We propose a set of photonic crystals that realize a nonlinear quantum Rabi model equivalent to a two-

level system driven by the phase of a quantized electromagnetic field. The crystals are exactly solvable

in the weak-coupling regime; their dispersion relation is discrete and the system is diagonalized by

normal modes similar to a dressed state basis. In the strong-coupling regime, we use perturbation

theory and find that the dispersion relation is continuous. We give the normal modes of the crystal in

terms of continued fractions that are valid for any given parameter set. We show that these photonic

crystals allow state reconstruction in the form of coherent oscillations in the weak-coupling regime. In

the strong-coupling regime, the general case allows at most partial reconstruction of single waveguide

input states, and non-symmetric coherent oscillations that show partial state reconstruction of

particular phase-controlled states.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Photonic crystals as classical simulators of quantum processes
have been the focus of attention in recent years [1–14]. In
particular, it has been shown theoretically and experimentally
that the so-called quantum Rabi model describing the interaction
of a two-level system with a quantum field may be realized by
photonic superlattices [15,16]. The quantum Rabi model in the
weak-coupling regime, i.e. the Jaynes–Cummings model [17],
describes a variety of quantum mechanical systems that have
been experimentally implemented; e.g. cavity-quantum electro-
dynamics (cavity-QED) [18], ion traps [19] and circuit-QED [20].
Strong-coupling is not feasible in a majority of simple quantum
optical systems but photonic crystals provide a classical realiza-
tion of the quantum model for all coupling regimes [15,16].

In quantum optics, diverse non-linear models describing the
interaction between a two-level system and a quantum field have
been proposed as deformations of the Jaynes–Cummings model
[21,22]. One example of these nonlinear models is the Buck–
Sukumar (BS) model where the atom–field coupling depends on
the intensity of the quantum field [23]. The BS model, which is
exactly solvable and does not have a feasible experimental
representation, unless it is classically realized in a couple of
binary photonic crystals where the coupling depends linearly on
the position of the waveguide, helps in understanding the
apparition of collapses and revivals of the two-level inversion in
the radiation–matter interaction systems.
ll rights reserved.

ez-Lara).
In the following, we propose a semi-infinite photonic crystal
that classically simulates a novel non-linear quantum optics
model describing an atom driven by just the phase of a quantum
field. Up to our knowledge both the non-linear radiation–matter
interaction model and its photonic realization are missing in the
literature. Then, we find the exact dispersion curves and normal
modes of the waveguide lattice in the weak-coupling regime. In
the strong-coupling regime, the dispersion relation is continuous
and we find the normal modes as continued fractions. The
transition from discrete to continuous spectrum, appearing in
our photonic crystal, does not show in the spectra of Rabi [24–26]
and BS [23] models which are discrete in both regimes, weak and
strong coupling. Thus, parameter sets delivering coherent oscilla-
tions in Rabi or BS models only produce coherent oscillations in
the weak-coupling regime of our model.
2. The model and its photonic crystal analogue

Let us consider the Hamiltonian describing a two-level system
driven by just the phase of a quantum field,

Ĥ ¼of â
y
âþ

o0

2
ŝzþlðeıf̂þe�ıf̂ Þŝx, ð1Þ

where the exponential of the quantum phase operator is given by
the Susskind–Glogower operator [27]

eıf̂ � V̂ ¼
1ffiffiffiffiffiffiffiffi
ââ
y

p â: ð2Þ

The field mode of frequency of is described by the annihilation
(creation) operators â (â

y
), the two-level system of transition

frequency o0 by Pauli matrices sx,y,z, and their interaction by the
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real coupling l. It is possible to separate this system in two
uncoupled Hamiltonians,

Ĥ 7 ¼of n̂8
o0

2
ð�1Þn̂þlðB̂þ B̂

y
Þ, ð3Þ

belonging to one of two parity chain basis,

9þ ,nS¼ B̂
yn
90,gS, ð4Þ

9�,nS¼ B̂
yn
90,eS, ð5Þ

defined such that parity,

P̂ ¼�szð�1Þn̂ ð6Þ

is conserved, /7 ,n9P̂97 ,nS¼ 7; the bases annihilation (crea-
tion) operator is given by B̂ ¼ V̂ ŝx (B̂

y
¼ V̂

y
ŝx) and the number

operator is defined as n̂97 ,mS¼m97 ,mS. By defining the
general state,

9c7S¼
X1
j ¼ 0

Eð7 Þj 97 ,jS, ð7Þ

the equations of motion for any given initial state under the
dynamics given by Hamiltonian (1) are reduced to the differential
set

i@tEð7 Þj ¼ of j8
o0

2
ð�1Þj

h i
Eð7 Þj þlðEð7 Þj�1 þE

ð7 Þ
jþ1Þ, ð8Þ

where the shorthand notation @t has been used for the partial
derivative with respect to t. This differential set is equivalent, up
to a phase and substituting t-z, to that describing the propaga-
tion equation of a classical field through a photonic waveguide
lattice. In this equivalent photonic waveguide lattice, Ej is the
amplitude of the field at the jth waveguide, the waveguides are
homogeneously coupled, and the refraction indices grow propor-
tional to of and to their position on the lattice plus a position
depending bias proportional to o0=2.

For the sake of simplicity, hereby we will refer to the photonic
crystals as Hþ or H�, depending on the sign of Eq. (8). In order to
construct these photonic crystals, one can choose to either
implement a static, Fig. 1(a), or dynamic, Fig. 1(b), relation
between parameters of and o0. The parameter o0 will be fixed
in both cases. Straight waveguides produce a fixed parameter of

independent of the wavelength of the impinging light. Bending
the waveguides along a circle introduces an index gradient
inversely proportional to the wavelength of the impinging light
[15,16]; thus, in this case the parameter of depends on the
wavelength of the impinging light and one can vary the ratio
between of and o0 by choosing the color of the impinging light.

It is interesting to notice that in the case o0 ¼ 0 our differential
set in Eq. (8) reduces to the one describing a semi-infinite
waveguide lattice with linearly increasing refractive indexes that
presents Bloch oscillations [28,29]. It is also known that an infinite
lattice, considering o0 ¼ 0 with a two-waveguides input with a
phase difference between them, i.e. Eðt¼ 0Þ ¼ E0ð0ÞþeifE1ð0Þ with
Fig. 1. (Color online) Two different schemes to produce the set of photonic crystals

coupled waveguides where the refraction index behaves as the function nð7 Þj pof j8o0

bent waveguides produce a parameter of that is proportional to the frequency of imp
fa0 and E0,1ð0ÞAR, shows a ratchet-like behavior controlled by
the phase f [30]. In our idea of classical simulation of a radiation–
matter interaction system, it may be possible to argue that the case
o0 ¼ 0 corresponds to emulating a hot trapped ion coupled to just
the phase of a bosonic mode; such an argument has been used in
the quantum Rabi problem [26].
3. Dispersion relation

Up to our knowledge and means, it is not possible to find an
exact dispersion relation for the photonic crystals described above,
but it is possible to separate the relevant coupling parameter in two
regimes, weak and strong, in order to obtain some results. In the
first of these regimes, we can borrow techniques from quantum
optics and find an exact dispersion relation. While on the last, we
can only deal with the problem through perturbation theory.

3.1. Weak-coupling regime: l5of ,o0

In the weak coupling regime one can find the exact spectrum
and normal modes of each one of the photonic crystals described by
the differential set (8) by taking a step back and implementing the
rotating wave approximation in the Hamiltonian of the system,

ĤRWA ¼of â
y
âþ

o0

2
ŝzþlðeıf̂ ŝþ þe�ıf̂ ŝ�Þ, ð9Þ

before establishing the classical analogue. Then, it is simpler to find
the spectrum and normal modes in this representation by using the
basis set f9n,eS,9nþ1,gS9g belonging to the manifold with nþ1
excitations. This leads to the discrete spectrum,

E7 ,n ¼of nþ
1

2

� �
7

O
2

, O¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
þ4l2

q
, ð10Þ

where the detuning is defined as d¼of�o0. The proper states are
given by

9n,7S¼ a7 9n,eSþb7 9nþ1,gS, ð11Þ

with

a7

b7
¼
�d7O

2l
: ð12Þ

Note that 90,gS is an eigenstate of the Hamiltonian with energy
E�,0 ¼�o0=2.

In our photonic crystals, Eq. (8), we can approximate the
dispersion relation, equivalent to the discrete spectrum found
above, by proposing a collective proper mode and realizing that
the three-term recurrence relations can be summarized by the
tridiagonal matrix,

H7 ,W ¼Hð7 Þ0 þP, ð13Þ

ðHð7 Þ0 Þi,j ¼ of j8
o0

2
ð�1Þj

h i
di,j, ð14Þ
realizing the phase driven two-level atom. A semi-infinite set of homogeneously

=2ð�1Þj . (a) Straight waveguides deliver fixed of and o0 parameters. (b) Circularly

inging light and a fixed parameter o0.



Fig. 2. (Color online) A segment of the dispersion relation in the weak-coupling

regime. Exact closed form from rotating wave approximation (solid black), 0th order

perturbation (dashed blue) and second order perturbation (dotted red) are shown.

We have used a detuning given by o0 ¼ 1:1of .
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ðPÞi,j ¼ lðdi,jþ1þdiþ1,jÞ, ð15Þ

where the notation ðMÞi,j stands for the (i, j)th term of Matrix M

and the symbol da,b is Kronecker’s delta. As l5of ,o0, we can
treat matrix P as a perturbation on matrix H0 and find the
eigenvalues of H7 up to second order corrections as the first
order correction is equal to zero. Thus, we obtain the approxi-
mated dispersion relation,

oðqÞð7 Þ �of q8
o0

2
ð�1Þq 1þ

4l2

o2
0�o2

f

 !
: ð16Þ

Fig. 2 shows good agreement between the dispersion relation given
by the exact eigenvalues in the rotating wave approximation, Eq. (10),
and the perturbation approach, Eq. (16), at zero and second order.

3.2. Strong-coupling regime: lbof ,o0

In the case when the coupling parameter is larger than the
field and transition frequencies, sometimes also called deep-
coupling regime, it is possible to write the three term recurrence
as

H7 ,S ¼H0þP7 , ð17Þ

ðH0Þi,j ¼ lðdi,jþ1þdiþ1,jÞ, ð18Þ

ðP7 Þi,j ¼ of j8
o0

2
ð�1Þj

h i
di,j: ð19Þ

Notice that lead order matrix is diagonalized via H0 ¼ VLV�1,
where the diagonal matrix L contains the values of the dispersion
relation in its diagonal and the matrix V has as columns the
coefficients of the normal modes given by

ðVÞj,q ¼Uj
mðqÞ
2l

� �
, mðqÞAR, ð20Þ

where the function Un(x) is the nth Chebyshev polynomial of the
second kind evaluated at x; i.e., the dispersion relation for this
case is continuous.

The first order correction for the dispersion relation delivers,

oðqÞ7 �mðqÞþ
Z 1

0
dmðqÞ

P1
k ¼ 0 Uk

mðqÞ
2l

� �� �2

of k8
o0

2
ð�1Þk

h i
P1

j ¼ 0 Uj
mðqÞ
2l

� �� �2
: ð21Þ
4. Collective modes

For any given set of parameters, decomposition in normal
modes delivers the three term recurrence mentioned before,

½að7 Þ0 �oðqÞ�c
ð7 ,qÞ
0 þlcð7 ,qÞ

1 ¼ 0, ð22Þ
½að7 Þj �oðqÞ�c
ð7 ,qÞ
j þlðcð7 ,qÞ

j�1 þcð7 ,qÞ
jþ1 Þ ¼ 0, ð23Þ

with

að7 Þj ¼of j8
o0

2
ð�1Þj, ð24Þ

where the coefficients cð7 ,qÞ
k are the kth coefficients of the qth

collective mode corresponding to the proper value oðqÞ. These
coefficients are given by,

cð7 ,qÞ
j ¼

Yj�1

k ¼ 0

sð7 ,qÞ
k cð7 ,qÞ

0 , ð25Þ

where we have used the continued fraction

sð7 ,qÞ
j ¼

cð7 ,qÞ
jþ1

cð7 ,qÞ
j

, ð26Þ

¼
l

oðqÞ�að7 Þjþ1�lsð7 ,qÞ
jþ1

, ð27Þ

¼
l

oðqÞ�að7 Þjþ1�
l2

oðqÞ�að7 Þjþ2� . . .

, ð28Þ

where one can always set c0 ¼ 1 and normalize the semi-infinite
set later. In the weak-coupling case, the continued fraction is cut
at the second term as the parameter l2 is negligible with respect
to the field frequency. This delivers a normal mode equivalent to
that found in the rotating wave approximation treatment.

In any given regime, we can take the continued fraction result
and use it to write the eigenvectors of the quantum Hamiltonian
in the reduced form,

9e7 ,mS¼
X1
j ¼ 0

cð7 ,mÞ
j 97 ,jS, ð29Þ

¼ ~c0

Ŷn�1

k ¼ 0

sðmÞk n̂!eB̂
y
�B̂ 97 ,0S, ð30Þ

where ~c0 is chosen such that /e7 ,m9e7 ,nS¼ dm,n.
For the case o0 ¼ 0, the amplitudes of the eigenvectors are

well known and calculated by moving the differential set to
Fourier domain and solving it there [28]. We want to mention
here that it is trivial to obtain an equivalent form from the
recurrence relations in Eqs. (22) and (23) by setting o0 ¼ 0,
cðþ ,mÞ

j ¼ cð�,mÞ
j ¼ cjðoqÞ � cj, oðqÞ �o, and c0 ¼ 1,

cj ¼
p
of

Yj�o=of
�

2l
of

� �
ðo�jof ÞJ�o=of

�
2l
of

� �
�lJ1�o=of

�
2l
of

� �� ��
þ

�Jj�o=of
�

2l
of

� �
ðo�jof ÞY�o=of

�
2l
of

� �
�lY1�o=of

�
2l
of

� �� ��
,

ð31Þ

where the symbols JaðxÞ and YaðxÞ stand for the modified Bessel
functions of the first and second kind, and the coefficients are
given up to a normalization factor.
5. Propagation examples

The dressed state basis that diagonalize our model in the
weak-coupling regime, Eq. (11), implies that starting in a state of
the kind 9j,eS or 9jþ1,gS, with jZ0, will produce coherent
oscillations. Such an initial state translates to laser light imping-
ing the jth or (jþ1)th waveguide of one of the lattices; the case j

even (odd) corresponds to the crystal H� (Hþ ). Fig. 3(a) shows the
propagation of light impinging at the 0th waveguide of our
photononic crystal H� in the weak-coupling regime which is



Fig. 3. (Color online) Examples of propagation in our negative parity photonic crystal. The left column (a, c) shows the case of weak-coupling, l¼ 0:1of , and the right (b, d)

the case of strong-coupling, l¼ 2of . The first row (a, b) depicts intensity propagation on the first ten waveguides of a total of five thousand when light impinges the zeroth

waveguide. The second row (c, d) shows the normalized intensity at the 0th (solid black) and first (dashed blue) waveguides. The dimensionless time parameter of t is

equivalent to the typical dimensionless propagation parameter.
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equivalent to an initial state 90,eS in the quantum optics model.
Accordingly, we observe the intensity oscillate between the 0th
and first wave corresponding to an oscillation between the 90,eS
and 91,gS states in the quantum optics model. Fig. 3(c) presents a
detail of the intensity at the 0th and first waveguide. This
normalized intensity at the 0th waveguide is proportional to the
probability of finding the time evolution of the quantum system
back in the initial state, I02P�,0, with

P�,0 ¼ 9/�,09cðtÞS92
, 9cð0ÞS¼ 9�,0S: ð32Þ

In quantum optics literature, it is known that the quantum
Rabi model produces coherent oscillations in the two-level
system inversion for o0 ¼ 0 [26]. In our model, due to the
continuous spectra, all proper states are scattering states and, in
the general case, at most we observe partial recovery of the
original state when the field starts localized at a given waveguide.
Fig. 3(b) shows the propagation of light impinging at the 0th
waveguide of the photonic lattice Hþ in the strong-coupling
regime, which is equivalent to an initial state 90,gS in the
quantum optics model; Fig. 3(d) focus on the intensity at the
first two waveguides. Again, the normalized intensity at the 0th
waveguide is proportional to the probability of finding the time
evolution of the quantum system back in the initial state,
I02Pþ ,0 ¼ 9/þ ,09cðtÞS92

, with 9cð0ÞS¼ 9þ ,0S, for this case.
Thus, our model presents both similar and different behaviors
from the full quantum Rabi model in the weak- and strong-
coupling regimes, in that order.

We can go further than comparing with the full quantum Rabi
problem. For o0 ¼ 0, it is known that single waveguide initial
states far from the edge will produce a breather mode evolution
and will reconstruct periodically, while multiple-waveguide
initial states with Gaussian weight distributions will present
Bloch oscillations [28,29]. Also, if we consider a double contig-
uous waveguide input with a phase difference between the
weights of the components,

9ckð0ÞS¼
1ffiffiffi
2
p ð9kSþeif9kþ1SÞ, kb0, ð33Þ
it is possible to obtain a periodical reconstruction [30]. This is
witnessed by the fidelity,

F ¼ 9/cð0Þ9cðtÞS92
: ð34Þ

Such an initial state produces a break in the symmetry of the
breather mode of a single input for fa0 [30]. This breaking in the
propagation symmetry is accompanied by a variable center of
mass of the beam,

xcm ¼/cðtÞ9n̂9cðtÞS, ð35Þ

¼
X1

j

j9cj9
2
, ð36Þ

where the amplitudes cj are normalized.
Fig. 4 shows the propagation of double waveguide initial state,

9ckð0ÞS in Eq. (33) with k¼20 and f¼ p=6. The left column
shows the case where o0 ¼ 0; it is possible to see that a
nonsymmetric breather mode is formed upon propagation,
Fig. 4(a), with periodic reconstruction, Fig. 4(c), and a so-called
ratchet-like behavior of the center of mass of the beam, Fig. 4(e).
The introduction of the binary modification, o0 ¼of , destroys the
nonsymmetric propagation breather mode, Fig. 4(b), with partial
reconstruction of the input, Fig. 4(d), and a quasi-periodical
behavior of the center of mass of the beam, Fig. 4(f).

All numerical simulations correspond to a finite photonic
lattice of size 5000.
6. Conclusion

We have proposed a set of two photonic crystals that classi-
cally simulates a new radiation–matter interaction where a two-
level system is driven by just the phase of a quantum field. Up to
our knowledge such a radiation–matter interaction systems does
not occur in nature and has not been proposed before.

We show that it is possible to determine exactly the dispersion
relation of the photonic waveguide lattices in the so-called weak-
coupling regime and that in the strong-coupling regime we can
use perturbation theory to approximate the dispersion relation up
to second order perturbation. In the first case, the dispersion



Fig. 4. (Color online) Examples of propagation in our positive parity photonic crystal in the strong-coupling regime with l¼ 2of . The initial state is the balanced

superposition of light impinging the 20th and 21th waveguide with a phase difference f¼ p=6. The left column (a, c, e) shows the case, o0 ¼ 0, and the right column (b, d,

f) the case, o0 ¼of . The first row (a, b) depicts intensity propagation on the waveguides from 10th to 30th of a total of five thousand. The second row (c, d) shows the

evolution of the Fidelity, Eq. (34). The third row (e, f) shows the evolution of the center of mass of the beam, Eq. (35). The dimensionless time parameter of t is equivalent

to the typical dimensionless propagation parameter.
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relation is discrete and, in the latter, continuous. Accordingly, the
spectra of the radiation–matter interaction model is equivalent to
that of the classical simulator.

The normal modes of the crystals are easily expressed in terms
of continued fractions as a function of the dispersion relation. In a
simplified version, they can be expressed in terms of modified
Bessel functions of the first and second kind.

In the simplified version, an initial state consisting of light
impinging two contiguous waveguides with a phase difference
between them produces a phase controlled, so-called ratchet-like
behavior of the center of mass of the beam upon propagation. This
behavior is attenuated and becomes noisy in the most general
model as the extra parameter increases in value.

Our optical realization of a phase driven two-level system
provides a scheme to explore an interesting process that is not
accessible by usual means; i.e. cavity-QED or trapped ions. And
describes a phase controlled phenomenon that may be realized in
other radiation–matter interaction systems.
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