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With the purpose to compare the physical features of the electromagnetic field, we describe the synthesis of optical singularities
propagating in the free space and on a metal surface. In both cases the electromagnetic field has a slit-shaped curve as a boundary
condition, and the singularities correspond to a shock wave that is a consequence of the curvature of the slit curve. As prototypes,
we generate singularities that correspond to fold and cusped regions. We show that singularities in free space may generate
bifurcation effects while plasmon fields do not generate these kinds of effects. Experimental results for free-space propagation
are presented and for surface plasmon fields, computer simulations are shown.

1. Introduction

The contemporary trends in plasmon optics consist of
establishing a parallelism with the traditional optical models.
The wave nature of the electromagnetic field in both
cases implies that the mathematical analysis may present
many similarities. However, the physical features may be
completely different. An important common behavior is that
the electromagnetic field is organized around the singular
regions. The simplest singular region is kind fold, and
the union of twofold focusing regions generates a cusped
focusing region [1]. These are the only focusing regions
that can be detected on a plane [1, 2], so that they are the
expected singularities for surface plasmon fields. From this
fact, some physical features can be analyzed. For optical fields
in free space, the inverse process may occur, that is, when
a cusped focusing region is split into two folds, vortex and
bifurcation effects may occur [3]. For the case of plasmon
fields, these features do not appear; however, the focusing
region generates charge redistribution [4, 5]. This latter
property offers many interesting applications; for example, it

can be implemented to polarize particles, allowing the design
of plasmonic tweezers.

In the present study, we describe the synthesis of singular
regions propagating in free space and they are compared
with the singular regions for surface plasmon fields. In both
cases, the singularities geometry can be obtained from the
phase function [6, 7], and it satisfies the nonlinear partial
differential equation [6]

∂2L

∂x2

∂2L

∂y2
−
(

∂2L

∂x∂y

)2

= 0, (1)

where L is the optical path length. When the boundary
condition is a slit-shaped curve, (1) has a simple geometrical
interpretation. The singularity is generated by means of the
envelope region of a ray set, and each ray must satisfy the
Fermat principle [8], and this construction is sketched in
Figure 1. According to the transversal condition [9], the rays
must emerge perpendicular to the curve slit. In the case
of plasmon fields, this geometrical point of view is very
important because all the electromagnetic fields propagating
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Figure 1: Generation of the singular region by means of a set
of plasmon rays. Each ray must satisfy variational principles; this
means that the rays must emerge perpendicular to the boundary
condition. This construction is valid for waves in free space and
surface plasmon fields.

on the metal surface can be considered as a “Geodesic Flow”
[10], and in this sense, the singularities are deeply related to
the stability of the flow.

2. Long-Range Surface Plasmon Modes

Surface plasmon modes are nonhomogeneous electromag-
netic waves propagating on the interface of a dielectric-metal
media. For a semi-infinite media, the electric field is

E1(x, z) =
(
�ia1 +�kb1

)
exp(−α1z) exp

(
iβx
)
,

E2(x, z) =
(
�ia2 +�kb2

)
exp(−α2z) exp

(
iβx
)
.

(2)

Related to this electromagnetic mode is the charge motion of
the free electrons, that oscillate longitudinally and transver-
sally to the surface. These oscillations are determined by
the trajectory of the electric field, whose geometry can
be obtained by establishing an analogy with the classical
polarization model. It is easy to show that the trajectory of
the electric field on the x-z plane is given by

E2
x

a2
1

+
E2
z(

αa1/
∣∣β∣∣)2 −

2ExEz
a2

1α/
∣∣β∣∣ cos δ0 = exp(−2αz)sin2δ0,

(3)

where β is the dispersion relation function that satisfies

β = w

c

(
ε1ε2

ε1 + ε2

)1/2

. (4)

ε1 is the permittivity of the dielectric media, ε2 is the
permittivity of the metal, which is a complex number, and
consequently, β is a complex function. The imaginary part is
responsible for surface plasmon modes propagating at very
short distances, about 100 μm. This length of propagation is
a serious limitation for the development of plasmon optics.
The synthesis of focusing regions implies the generation of

long-range surface plasmon modes modifying the dispersion
relation function β. This is possible when the surface
plasmon is propagating in a metallic thin film of thickness
20–80 nm. The calculus of the new dispersion relation
function is described by means of the interaction between
two plasmon modes, as shown in Figure 2.

The interaction between the two modes is performed by
using the coupling mode theory. This implies to model the
surface effects, associating an expression for the refractive
index, in the neighborhood of the interface of the dielectric-
metal surface, which is given by

n = n1 + a exp
(−pz), z ≥ d, (5)

where n1 is the refractive index of the dielectric media, a
is a small constant determined by the combination of the
materials involved, d is the thickness of the film, and p is a
parameter that allows us to model the surface effects. When
z → ∞, the proposed refractive index recovers the classical
expression for the dielectric media.

For this case, the dispersion relation function acquires
the form

β = ω

c

{(
ε1ε2

ε1 + ε2

)1/2

+ 2an1

(
ε1ε2

ε1 + ε2

)−1/2

exp(−2αd)

}
.

(6)

The calculus details can be found in [4]. When the last
expression is substituted in (3), the trajectory geometry of
the electrical field on z = constant is an ellipse segment, as
shown in Figure 3.

The modulus of the imaginary part given by (6) is minor,
when compared with that given by (4). As a consequence the
plasmon fields for a thin film propagate large distances. The
geometrical interpretation is that the x-component for the
electric field is minor, decreasing the amplitude oscillation of
the charge along the x-axis.

The parameters implicit in (5) are sketched in Figure 2.
The expression for the long-range surface plasmon mode is
obtained by replacing the expression for β given by (6) in (2).

To generate the singular regions, it is necessary to
describe the long-range plasmon mode on the x-y plane.
The corresponding expression is obtained by rotating the
z-axis, and the transformation of coordinates is z → z;
x → x cos θ± y sin θ. The general expression for the plasmon
mode is

E
(
x, y, z

) = (�ia +�kb cos θ + �jb sin θ
)

× exp(−α1z) exp
(
iβ
(
x cos θ + y sin θ

))
,

(7)

with β given as that presented in (6).

3. Singular Regions in Free Space

With the purpose to analyze the singularities, we describe the
generation of fold singularities propagating in free space. The
transmittance function has a mathematical representation in
the frequency space of the form [6]

T(u, v) = δ
(
u− f (v)

)
, (8)
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Figure 2: Schematic set up to describe the synthesis of long-range surface plasmon modes. The surface effects are described by assuming an
exponential representation for the refractive index. The physical effects are described by assuming two surface plasmon modes propagating
on each surface.

metal mediaElectric field for semi-infinite

θ
ε1

ε2

Ey

Ex

(a)

thin metal filmElectric field for

θ
ε1

ε2

ε3

Ey

(b)

Figure 3: Polarization-like trajectory for surface plasmon modes. (a) Surface plasmon modes propagating in a semi-infinite media. (b)
Surface plasmon modes propagating on a thin film.

where δ is the Dirac delta-function. The diffraction field,
using the angular spectrum model is given by [11]

ϕ
(
x, y, z

) =
∫∫∞

−∞
δ
(
u− f (v)

)

× exp
{
i2π
(
xu + yv + zp

)}
dudv,

(9)

where u = cosα/λ, v = cosβ/λ, p = cos γ/λ are the spatial
frequencies that satisfy u2 + v2 + p2 = 1/λ2 ; α, β, and γ are
the angles that makes the wave vector with the (x,y,z)-axis;
and λ is the wavelength. In Figure 4, the setup to generate the
diffraction field associated with slit-shaped curves is shown.

As prototype, we describe the synthesis of two kinds of
optical fields. The first one has a transmittance as boundary

condition, whose geometry in frequency space is a cubic
function given by

T(u, v) = δ
(
u− v3). (10)

The optical field has the representation
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)}
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(11)

The optical field presents bifurcation effects that are mani-
fested during its propagation. To understand the amplitude
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Figure 4: Schematic setup to generate the optical field associated with slit-shape curves.

distribution, we implement a kind of spatial filtering, which
is obtained by placing a screen containing a linear slit on
z = 0, whose representation is t(y) = δ(y−1). The amplitude
distribution is

Φ1
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x, y, z = 0

)

= δ
(
y − 1

) ∫∞
−∞
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dv
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(
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))
dv.

(12)

By translating the screen to the position defined by y = −1,
the mathematical representation for the optical field is given
by
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(13)

The phase function represented by (12) and (13) differs in
a sign, being equals along the direction defined by v =
0. The bifurcations effects appear when the optical field is
propagating to different planes, that is, z /= 0; therefore, each
optical field propagates by different paths. In Figure 5(a),
the experimental result in z = 0 plane is shown, and
in Figure 5(b) the experimental result for z /= 0 where the
bifurcation effects become evident are presented. From these
results, it can be noted that the right branch is shifted to
the bottom and the left branch is shifted to the top. The
entire optical field unfolds based on the structure of the
transmittance function.

4. Singular Surface Plasmon Fields

Singularities for surface plasmon fields can be obtained in a
way similar to that employed for the free space case, and the

corresponding surface plasmon angular spectrum model is
[4, 5]

E1
(
x, y, z

)

=
∫∫∞

−∞

(
�iA(u) + �jB(u) +�kC(u)

)

× exp(−2πα1z) exp
(
i2πβ

(
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))
dudv,

(14)

where the term (�iA(u) + �jB(u) + �kC(u)) represents the
transmittance function in the frequency space. For a slit-
shape curve, we have that the transmittance takes the form

T(u, v) =
(
�ia + �jb +�kc

)
δ
(
uτ(λ,d)− f (v)

)
, (15)

where (a,b,c) are the components of a constant vector and
are necessary to satisfy the boundary conditions of the
electromagnetic field. More details with respect to the value
of the constants can be found in [4]. The scale term τ(λ,d)
is proposed to describe the coupling between the diffraction
field propagating in free space and surface plasmon fields. In
Figure 6, the experimental setup to generate surface plasmon
singularities is shown.

The singularities are generated by illuminating a slit-
shape curve recorded on a thin metal film, whose thickness
is in the order of 20–80 nm, and this allows generating long-
range surface plasmon modes. The width d of the slit must
be smaller than the illumination wavelength λ.

The expression for the surface plasmon diffraction field
is given by

E1
(
x, y, z

) =
∫∞
−∞

(
�ia + �jb +�kc

)
exp(−2παz)

× exp
(
i2πβ

(
xτ(λ,d) f (v) + yv

))
du.

(16)

Let us consider two examples. The first one is when the
transmittance function contains a slit-cubic curve, given by

T(u, v) =
(
�ia + �jb +�kc

)
δ
(
u
(
λ

d
+ i

d

λ

)
− v3

)
, (17)



International Journal of Optics 5

(a) (b)

Figure 5: (a) Optical field on z = 0 plane. This optical field is formed by two optical fields, and the spatial evolution of these two fields
generates the bifurcation effects. (b) The generation of bifurcation effects. The distance between the two images along z-coordinate is
approximately 1 cm; after this distance, the optical field remains practically unchanged.
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Figure 6: Experimental setup to generate surface plasmon singular-
ities. The thin metal film contains a slit-shaped curve.

The term τ(λ,d) = (d/λ + i(λ/d)) is proposed as an ansatz.
When d >> λ, the imaginary part is very small and the optical
field recovers the structure of the optical field propagating
in free space. The opposite case d << λ, means that the
imaginary part becomes dominant and the optical field
acquires the form of evanescent waves, wich is the condition
to generate surface plasmon fields. The surface plasmon
diffraction field is

E1
(
x, y, z

) =
∫∞
−∞

(
�ia + �jb +�kc

)
exp(−2πzα)

× exp
(
i2πβ

(
yτ(λ,d)v+xτ(λ,dv)3 f (v)3

))
dv,

(18)

having a representation of a fold caustic [2] and is similar
to an Airy function [12]. The second example is when the
transmittance function contains a slit-quadratic curve given
by

T(u, v) =
(
�ia + �jb +�kc

)
δ
(
vτ(λ,d)− u2), (19)

and the surface plasmon diffraction field is
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(20)

The amplitude distribution must satisfy the Helmholtz
equation, which means that the spatial frequencies must
satisfy β2(u2 + v2) − α2 = 1/λ2. By substituting this
expression in the integral representation and using the
paraxial approximation, the amplitude function acquires the
form
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τ

])
du.

(21)

In Figure 7, we show the computer simulation. At this point,
it is convenient to compare (9) with (16). In both cases,
the boundary conditions are described in the x-y plane.
However the phase terms in each case are different, having
a decreasing exponential function for plasmon fields and a
complex dependence for free-space propagation. This means
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Figure 7: Front view of the metal surface. The illumination is incident from the back of the screen. (a) The screen containing a slit-cubic
curve recorded on a thin metal film. (b) The surface plasmon diffraction field and its singular region. (c) Transmittance containing a
parabolic curve and (d) singularity associated with this transmittance.

that the bifurcation effects must appear perpendicular to the
plane that contains the slit-shaped curve; consequently, the
plasmon singularities have a stationary character.

Finally, we remark that the phase function in (18) and
(21) has the structure of a catastrophe function [2]. This
means that the singularities correspond to the curvature
center of the slit curve [6], and has a stationary character,
generating charge redistribution given by ∇ · E1,2 = ρ/ε1,2,
where the electrical field can be represented as

E
(
x, y, z

)

=
∫∞
−∞
�ξ exp(−2παz)

× exp
(
i2πβ

[
germ function(ν)

+perturbation function(ν,m,n)
]
dv
)
,

(22)

where m, n are parameters related with the curvature
centers. The generic physical properties associated to the
singularities of surface plasmon fields can be obtained from
this representation.

5. Conclusions

We described the synthesis of surface plasmon singularities
by analyzing the spatial evolution of the surface plasmon
field emerging from a slit-shaped curve. The singularities can
be easily understood by considering that they are generated
by an envelope of a set of normal trajectories emerging
from each point on the boundary condition. The geometry
generated by the envelope of trajectories satisfies a nonlinear
partial differential equation, and the surface plasmon sin-
gularity generates a charge distribution; for this reason, the
singularities offer application as surface plasmon tweezers.
This can be implemented by depositing micronano/particles
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on the metal surface, illuminating with different frequencies;
we can generate a set of plasmon singularities inducing
tunable resonance effects. These results and its potential
applications will be presented in a forthcoming paper.
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