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Self-focusing transmittances
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In this Letter, we describe the optical field associated with transmittances characterized by a slit-shaped curve. The
influence of the curvature is that the diffraction field generates focusing regions. The focusing geometry corresponds
to the geometry of the transmittance curve, except for scaling, rotations or translations. A relevant point is that the
changes in the morphology of the diffraction field are bounded by the focusing regions. Our experimental and

computational results are in good agreement with the theoretical predictions.
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The optical fields are characterized by an amplitude com-
plex function whose spatial evolve may have regions
with different physical properties. In general, these re-
gions are separated by caustic regions that are easily
identified because they present high- energy with respect
to other regions of the optical field [1-3]. The different
physical features appear because in the caustic region,
the phase function “collapses” generating a singularity
and wave behavior is not presented. Rather, a particle
feature becomes dominant and this implies the necessity
to synthesize focusing regions with different geometries.
In this context, the caustic region can be considered as a
separatrix region that connects regions with different
physical properties. For that reason, in the caustic re-
gions, “birth or death” of interesting features, such as
vortex, bifurcation can be expected [4-6]. Indeed, the
particle structure of the caustic regions offer important
applications, e.g., it can be implemented to illuminate a
metal surface generating surface plasmon fields, and as
optical tweezers for particle trapping [7,8]. These find-
ings are the motivation to generate and study focusing
regions.

In the present study, we describe the development of
caustic regions whose geometry corresponds to the geo-
metry of the boundary condition that is characterized by
a slit-shaped curve. The model is implemented experi-
mentally and the experiments reveal how bifurcation ef-
fects are organized around the caustic regions that are
the manifestation of the curvature center of the transmit-
tance function [3]. A property of cycloids, hypocycloids,
and epicycloids is that its evolute curve is also a cycloid,
hypocycloid, or epicycloid in a scaled version, rotated, or
translated with respect to the original curve [9,10]. This
property will be used for the design of the self-focusing
transmittances. The study is supported by two remark-
able mathematical results: a) The evolute of the curve
corresponds to the envelope region of the curvature cen-
ters; it can also be obtained by the envelope curve of the
normal linear to the curve [3,9]; b) The singularity propa-
gates on a plane along the projection of the characteristic
curves [11,12]. These two results make it possible to ana-
lyze the topological structure of the optical field on the
transmittance plane identifying the singularities and then
projecting to parallel planes. By using the geometrical
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theory of diffraction [13], the optical field emerging from
a slit-shaped curve can be interpreted as a set of rays,
where each ray satisfies the extremal principle, and con-
sequently must satisfy the transversal condition [14].
Subsequently, the diffraction rays must emerge perpen-
dicular to the slit curve. The consequence of this fact
is that the optical field can be ordered, signifying that
we can identify regions in which only one ray passes, re-
gions generated by an envelope of rays, and regions
where two or more rays pass. In this way, the envelope
of the ray set, when propagating, generates a cylinder
having the evolute as the basis. The focusing regions
are the walls of the cylinder, and the physical features
attached can be studied by means of the interference be-
tween the diffracting field with a plane wave. In addition,
the focusing region presents morphological invariance
for long distances of propagation and can be considered
as a version of nondiffracting optical fields. Each ray in a
homogeneous media propagates following a linear path.
However, the ray set may generate an envelope whose
geometry is not linear.

The study of the diffraction field is obtained from the
formal solution for the Helmholtz equation in the two-
dimensional version given by

o(P) = % / [S e: {(zk - %)AT - VA} ndl. (D)

In the calculus of the integral, we can identify three
regions that are sketched in Fig. 1. When describing the
diffraction field of transmittances of slit-shaped curves, it
is natural to invoke some results of differential geometry.
One of them is the order concept that characterizes the
number of trajectories that pass in the neighborhood of a
point P (contact point). This point is common to two
curves or surfaces. For a tangent surface, the number
of trajectories is at least two. The order concept is
sketched in Fig. 1; more details concerning this concept
can be found in [9]. With this concept, the amplitude for
optical field can be approximated as a sum of trajec-
tories. For regions where only a single trajectory passes,
the amplitude function can be given as

© 2012 Optical Society of America



2122

\ Multiple order region

p

OPTICS LETTERS / Vol. 37, No. 11 / June 1, 2012

Cycloid curve

Envelope curve

One ordpr region

Slit shape curve

Fig. 1. (Left) Transmittance plane containing a slit curve; the
curvature centers generate a focusing region that is the separ-
atrix for regions with different orders. (Right) Transmittance
containing a cycloid shape curve and its evolute. For this case,
the higher order points are in the neighborhood of the cusped
regions.
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where R is the normal distance from a point on the slit
curve, k is the wave number, A is the boundary condition
associated to a slit shape curve, and B(6) is an obliquity
factor, which is not important for the study of generic
features. For regions where many trajectories pass, the
integral can be approximated as
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where N is the order of the curve. For slit curves we have
that the singularity corresponds to the envelope of the
trajectories emerging perpendicular to the curve, and
the geometry is given by the evolute of the curve. For this
curve, the singular regions correspond to the envelope of
the curvature centers.

The previous concepts have deep implications in the
study of the scattering of tridimensional curves, i.e.,
curves with curvature and torsion. The concept of order
will be applied in brief to explain the experimental
results. As mentioned earlier, we are interested in trans-
mittances whose envelopes correspond to the same
geometry transmittance except scaling, rotations or
translations. These curves are cycloids, hypocycloids,
and epicycloids. The representation for curvature cen-
ters is
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when the transmittance is a cycloid slit, it is given by
x = a(t - sin t);

y = a(l--cost). ®)

By direct substitution in Eq. (4) it is easy to obtain
curvature centers given as

a = a(t - sin ?); p =a(l-cost)-2a. (6)

The geometry is the other cycloid curve shifted with
respect to the original. In Fig. 2, we show the diffraction

Fig. 2. Experimental results for the diffraction field on two
planes separated 15 cm. The transmittance consists in a cycloid
slit. It was recorded on high resolution plate and it is contained
in a square of 0.5 cm per side. The width of the slit is approxi-
mately 0.2 mm. The wavelength used is 623.8 nm.

field generated with a cycloid curve. It must be noted that
all the morphological changes in the diffraction field are
bounded by the evolute of the curve.

Another interesting case occurs when the transmit-
tance is a hypocycloid slit whose parametric representa-
tion is given by

x=(R-Ry)cost+ R, cos(RI_gRO t),
0

= (R-Ry)sin t + R, sin(R z_eRO t), )
0

where R is the radius of the inner circle and R = nR, is
the radius of the outer circle where 7 is an integer. From
these representations, it is easy to show that the evolutes
of hypocycloid curves are a scaled and rotated version of
the same hypocycloid:
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Fig. 3. (Color online) Experimental results on two propaga-
tion planes for the diffraction of screens containing an epicy-
cloid slit with » =3, 4, 6, respectively. The curves were
recorded on high resolution plate of 5 mm per side.




Fig. 4. Computer simulation for the interference between a
plane wave with a diffraction field that presents a focusing re-
gion with four and six cusps. Bifurcation of the phase function
occurs in the neighborhood of the cusped regions where kind
speckle pattern is observed.
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In Fig. 3, we have shown the experimental results;
similar to cycloids, the morphological changes are
bounded by the evolute. The next point consists of de-
scribing the local topological structure of the phase func-
tion. This can be done by interfering the diffracted field
with a plane wave. In Fig. 4, we show the computer
simulations.

Numerical simulation shows that the interference oc-
curs only in the region of order one and the evolute and
the inner region remain practically unchanged; this beha-
vior was also observed experimentally. These results
show that the focusing region is structurally stable.
The diffraction field, at a global scale, must be organized
around the focusing regions, and the local bifurcation ef-
fects of the phase function appear mainly around the
cusped regions. In conclusion, we report the existence
of transmittances slit, whose diffraction fields have
associated focusing regions and whose geometry
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corresponds to the evolute of the curve. The transmit-
tance geometry corresponds to cycloids and epicycloids.
An important feature is that the optical field is bounded
by the singular region and the phase function presents
bifurcation effects in the neighborhood of cusped
regions; the experimental results reveal these effects.
In a forthcoming paper, a study will be presented to
describe the scattered field generated by illuminating a
three-dimensional slit- shaped curve that presents curva-
ture and torsion. The concept of order and contact point
allows classifying this kind and co-dimension of the local
bifurcation effects. This will be used to describe the
cinematic focusing region as it propagates through inho-
mogeneous media and explains the generation of vortex
and bifurcation effects.
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