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Abstract
Considering that the nonlinear photoinduced phase shift to a Gaussian beam in a thin sample of
nonlocal nonlinear media can be modeled as a Gaussian function to some real power the
far-field can be calculated using the Fraunhofer integral. In this paper we calculate numerically
this integral to obtain the on-axis intensity in a Z -scan experiment or the intensity pattern in a
self-phase modulation experiment. Experimental results of samples under cw illumination are
fitted using the model with a good correspondence between experimental and numerical results.
The model presented is adequate to describe samples with any magnitude of the maximum
nonlinear photoinduced phase shift of purely refractive local or nonlocal nonlinear thin media.

Keywords: nonlinear phase shift, nonlocal nonlinear media, Z -scan, self-phase modulation

1. Introduction

The Z -scan technique to evaluate the nonlinear refractive
index of materials was proposed by Sheik-Bahae et al in
1989 [1]. Its popularity has increased since then due to its
experimental simplicity and easy analysis of the results to
give the sign and magnitude of the nonlinear index change.
Originally the technique was proposed with a Gaussian
beam and for on-axis intensity detection, for thin nonlinear
samples and small photoinduced phase shifts (<π ) [2].
Later, thick samples were considered in the technique [3],
and off-axis or eclipsed detection was proposed in order
to increase the sensitivity [4, 5]. Different incident beam
shapes have also been considered like top-hat [6], non-
Gaussian [7], circularly symmetric [8] and arbitrary beams [9].
With the development of light sources with femtosecond
pulse duration the scope of the Z -scan technique was
increased to use white-light continuum for characterization of
degenerate nonlinear absorption and refraction [10], for the

simultaneous measurement of self-phase modulation and two-
photon absorption with shaped femtosecond laser pulses [11],
and for the investigation of the temporal duration of the third-
order nonlinear refraction induced by a given laser pulse [12].

The Z -scan technique can be considered as an extension
of the extracavity thermal lens technique of Hu and
Whinnery [13], a technique used to evaluate low absorptivity
in liquids [14, 15]. A theoretical model of the laser-induced
thermal lens taking into account the aberrant nature of the
lens was presented in [16]. In [17] the refractive shape of
the thermal lens was approximated with a parabola and was
compared with the aberrant model and experimental results.
The most complete model to study the effect of an aberrant
thermal lens was presented in [18], where the exact diffraction
integral is calculated: however, an approximation was made in
the temperature field.

The Z -scan technique from the theoretical point of view,
in order to calculate the on-axis intensity at far-field, has
been treated with the Gaussian beam decomposition (GD)
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method [2, 19], the Huygens–Fresnel principle [20], the
diffraction theory [21] and other methods. Recently, it was
demonstrated that the GD approach can be used to describe
samples with large nonlinear phase shifts (>π ) [22]. The
main result obtained with this theory, for small nonlinear phase
shifts, was an analytical formula for the on-axis normalized
transmittance T of the form

T = 1 + 4��0x

(x2 + 1)(x2 + 9)
(1)

where x = z/z0, z0 = πw2
0/λ, w0 is the waist of the incident

Gaussian beam of wavelength λ and ��0 is the nonlinear
phase shift at the waist. The curve described by equation (1)
has a peak–valley transmittance difference given by �Tp−v =
0.406|��0| and a peak–valley separation of �zp−v = 1.72z0.
However, different expressions have been proposed in order
to describe the results obtained for materials with a nonlocal
response. For example, in [23], for a model based on a thermal
medium a �Tp−v = 2|��0| and �zp−v = 2z0 were calculated.

Recently, a general Z -scan theory based on the solution of
the paraxial wave equation and the Huygens–Fresnel principle
was presented [24]. It was demonstrated that equation (1) is
valid for |��0| < 0.2π rad and they made a comparison
between different models, concluding that models that do
not apply the parabolic approximation give correct results.
However, the results obtained in that paper are valid only in
the case of materials with a local response.

In this work we demonstrate numerically that the relations
obtained with the GD model are valid only when the response
of the material is local. When the nonlocality of the
nonlinear material response is taken into account then different
dependences need to be considered without regarding the
magnitude of the on-axis nonlinear phase shift. Our results
are based on the recently published model where a simple
expression was given to consider the nonlocality in spatial
self-phase modulation experiments [25]. Our main idea is
to consider that the spatial extension of the photoinduced
nonlinear phase shift can be wider or narrower than the
incident intensity beam. This idea had been used in order
to obtain a good correspondence between experimental and
theoretical results in spatial self-phase modulation experiments
in materials as liquid crystals [26] and dyed solutions [27]. We
show how the changes of �Tp−v and �zp−v are functions of
both the nonlocality of the material and the magnitude of ��0.

In section 2 we present our theoretical model where a
dependence on z is included in the on-axis nonlinear phase
shift in order to describe Z -scan results with the same model.
Analyses for small and large phase shifts are presented in the
following sections. Experimental results for different materials
under cw illumination are adjusted using the proposed model.
Finally the conclusions are given.

2. Theoretical model

We consider a Gaussian beam of waist w0 and wavelength λ,
propagating in the z direction. This beam has a Rayleigh range

z0 given by z0 = πw2
0/λ, and the following field amplitude:

E(r, z)= A0
w0

w(z)
exp

[
− r 2

w(z)2

]
exp

[
−ikz−ik

r 2

2R(z)
+iε(z)

]

(2)
where

w(z) = w0[1 + (z/z0)
2]1/2 (3)

R(z) = z[1 + (z0/z)2] (4)

ε(z) = tan−1(z/z0) (5)

where A0 is a constant, k = 2π/λ, w(z) and R(z) are the beam
width and wavefront radius of curvature, respectively, and ε(z)
is the Gouy phase retardation relative to a plane wave.

At some distance z, from the waist, the beam illuminates
an optical nonlinear sample of width d . The sample is going
to be considered as thin (d � z0) and that presents a refractive
index dependent on the incident intensity. It is well accepted
that when a Gaussian beam illuminates such a sample then the
output field can be expressed by [28]

Eout = E(r, z) exp(−i�φ(r)) (6)

where we are considering for simplicity that the sample does
not have absorption. E is the field amplitude of the Gaussian
beam at the entrance of the sample, r the radial coordinate
and �φ(r) the nonlinear phase change. In order to obtain
this approximation it is necessary to consider that the incident
beam amplitude does not change inside the media. This can be
demonstrated considering the nonlinear Schrödinger equation
where the transversal Laplacian can be ignored. For example,
for a Gaussian beam, if a 5% change in the beam radius is
allowed that means that the approximation is valid for a width
smaller than z0/3. We propose that this nonlinear phase change
can be approximated as

�φ(r) ≈ �φ0(z, m) exp(−mr 2/w(z)2) (7)

where

�φ0(z, m) = ��0

(1 + (z/z0)2)m/2
(8)

where ��0 is the maximum on-axis photoinduced phase shift
in the beam after the nonlinear medium located at z = 0 and
m can be any real positive number. An analogous approach
has been used by other groups in order to explain their
experimental results: a corresponding value of m = 3.7 was
used in [26] and m values around 1 were used in [27]. As
discussed in [25], only for m = 2 the nonlinear phase change
follows the intensity distribution and then the response of the
material is considered as local, values of m different from
two will be considered as nonlocal. This dependence for the
nonlinear phase shift, for m = 2, has also been considered
in [20]. It is important to note that, without the dependence on
z in the nonlinear phase change (8), it is impossible to describe
the on-axis intensity in the Z -scan technique.

Both the Z -scan technique and spatial self-phase
modulation experiments require detection at far-field. Then in
our case, the field distribution at that plane can be calculated
from the Fraunhofer integral using equation (6) as the input
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Figure 1. Z -scan curves obtained for: (a) the same on-axis nonlinear phase shift of 0.1 rad and different values of the parameter m: 1 (square
line), 2 (solid line) and 4 (dotted line), and (b) different values of ��0 = 0.07 rad (m = 1, square line), 0.10 rad (m = 2, solid line) and
0.2 rad (m = 4, dotted line).

Figure 2. Numerical results for: (a) �zp−v/z0 and (b) �Tp−v as functions of ��0, for m equal to: 1 (square line), 2 (solid line) and 4 (dotted
line). Gray solid lines represent a linear behavior for small ��0.

field. This integral is obtained numerically in this paper to
calculate the on-axis intensity or the cross section.

In section 3 we present numerical results for the Fourier
transform of the field given by equation (6), considering
equation (8), for nonlinear phase shifts smaller than π and
different values of m in the Z -scan technique. Next, Z -scan
results are presented for large values of the nonlinear phase
shift and in some positions the intensity pattern is shown.

3. Numerical results

3.1. Nonlinear phase shifts smaller than π

When ��0 < π rad, very few rings appear at far-field; then it
is more usual to represent the nonlinear behavior of any sample
using the Z -scan technique. In figure 1(a) the Z -scan curves
obtained for a sample with ��0 = 0.1 rad are plotted for
different values of the parameter m. For m = 2, the obtained
curve is very similar to that given by equation (1). However,
when m < 2 the amplitude of the curve is larger than that
obtained for the local case and for m > 2 the amplitude of
the curve is smaller than that for the local case. At first sight
it seems that no large differences appear in the Z -scan curves.
However, in order to see clearly the main differences between
the curves, in figure 1(b) are shown the Z -scan curves for m
values of: 1, 2 and 4, but values of ��0 were adjusted to give

almost the same peak–valley transmittance difference. In this
figure we can observe that the curves differ in the peak–valley
position and in the form of how the transmittance behaves far
from z = 0. Then different values of the parameter m give
Z -scan curves with particular characteristics.

In particular when m = 2, local case (solid lines), the
peak–valley separation distance as a function of ��0 follows
a behavior as that shown in figure 2(a) (solid line). This
behavior is very similar to that reported when an analytical
expression is obtained for the on-axis normalized transmittance
in a Z -scan experiment [29]. For small nonlinear phase shifts
the separation takes the value obtained by Sheik-Bahae of
1.72z0: however, the separation rapidly reached a minimum
value of 1.69z0 at ��0 = 0.6π rad and for values of ��0 >

π rad the separation increased monotonically. The peak–valley
transmittance difference �Tp−v followed the behavior shown
in figure 2(b) (solid line), where the gray solid line represents
the results obtained from the GD method. One more time, our
results are very similar to those obtained with the analytical
formula presented in [20]. As we can observe the results from
the GD method are valid for ��0 < π rad.

For m = 1, this means a medium where the locality of
the nonlinearity extends beyond the illuminated region. The
characteristics of the Z -scan curve for ��0 < π rad are the
following: the �zp−v is 2.2z0 for very small phases and it
remains practically constant for ��0 < 1.5π rad, square line

3



J. Opt. 13 (2011) 085203 E V Garcia Ramirez et al

Figure 3. Numerical results for: (a) �zp−v/z0 and (b) �Tp−v as functions of the parameter m for ��0 = 0.1 rad.

in figure 2(a). Note that this peak–valley separation distance
is very similar to that obtained in Z -scan experiments with cw
excitation of dyed solutions [29] and theoretical Z -scan curves
with a dependence in the photoinduced focal length to the
square of the beam radius [30]. The peak–valley transmittance
difference is plotted as the square line in figure 2(b), where
we can observe that a linear behavior is obtained for ��0 <

π/2 rad, with a dependence given by �Tp−v = 0.56|��0|;
this means that for this nonlocality the amplitude of the curve
is larger than that for a local media, for the same ��0. For
��0 > π/2 rad, the peak–valley difference is smaller than the
linear prediction.

For m = 4, this means a material where the nonlinear
phase shifts take up an area smaller than the incident
beam; the results obtained for the peak–valley separation and
transmittance difference are shown as dashed lines in figure 2.
For small nonlinear phase shifts the separation takes the value
of 1.13z0, reached a minimum of 1.10z0 at ��0 = 0.6π rad
and after that the separation increases monotonically. Note that
this difference is almost 1/2 of that obtained with m = 1 and
1/3 smaller than that obtained with m = 2. The peak–valley
transmittance difference followed a behavior as that shown in
figure 2(b) (dashed line). We can observe a linear behavior
for nonlinear phases smaller than 0.3π rad, with a dependence
of the form �Tp−v = 0.2|��0|. For higher values than
0.3π rad of the nonlinear phase the difference is larger than
that predicted by the linear behavior.

From the values used as an example to see the influence
of m in the Z -scan curve it seems that m < 2 produces Z -scan
curves with a peak–valley separation larger than that obtained
with m = 2 and the opposite for m > 2. However, this is not
the case: the peak–valley separation distance does not increase
to infinity as m decreases, it reaches a maximum value for
m = 0.6, see figure 3(a), and tends to zero as m increases in
a very slow way. Similar behavior is obtained for the peak–
valley transmittance difference: a maximum is obtained for
m = 0.8 and tends to zero as m increases in a very slow way,
see figure 3(b).

From the previous analysis, we can say that it is
not enough to have, from a Z -scan curve, the peak–
valley separation distance and the peak–valley transmittance
difference because more than one m value gives such
characteristics. It is important to also reproduce the behavior of
the transmittance far from z = 0. For example, if a separation

Figure 4. Z -scan curves for the local case (m = 2) and ��0 of: π
(thick black line), 2π (square line), 3π (dashed line), 5π (thin black
line) and 10π (dotted line) rad.

of 2.1z0 is obtained for a sample in some Z -scan experiment,
then two values of m reproduce such a separation. To decide
which value is adequate it is important to know all the behavior
in z of the normalized transmittance.

In order to calculate the normalized transmittance in our
model when ��0 < π/2 rad, the following empirical formula
can be used:

T (z) = 1 + 2m��0x

(x2 + (m + 1)2)(x2 + 1)m/2

+ m2(3x2 − (2m + 1))��2
0

(x2 + 1)m(x2 + (m + 1)2)(x2 + (2m + 1)2)
(9)

where x = z/z0. When m = 2 this formula reproduces
the expression obtained under a second-order approximation
for pure third-order nonlinear refraction, using the Gaussian
decomposition method [31].

3.2. Nonlinear phase shifts larger than π

When the nonlinear phase shift is larger than π , the Z -scan
curves begin to be asymmetric and the peak–valley separation
increases. In figure 4 we plot the normalized transmittance for
different ��0 for the local case (m = 2). In this case the
peak moved to positive values in a faster way than the valley
moved to negative values. The point of transmittance equal
to one moved to positive values. The valley was broadening
as the phase shift increased. Note that the curves for π , 2π

4



J. Opt. 13 (2011) 085203 E V Garcia Ramirez et al

Figure 5. Cross sections of the far-field patterns versus angular position (ρ mm−1) for the local case (m = 2) and ��0 = 10π rad at positions
z: (a) −z0, (b) 0 and (c) z0.

Figure 6. Numerically calculated (a) �zp−v/z0 and (b) �Tp−v as functions of ��0 for m = 2.

and 3π rad coincide with those presented in [20], where an
analytical formula was used to calculate the on-axis normalized
transmittance and are very similar to those presented in [21],
where a diffraction model was used, and those in [22], where
the Gaussian decomposition method was used. When ��0 >

2π rad some oscillation can be observed in the valley. This
effect is due to the fact that the far-field intensity distribution
consists of many rings and the center of the pattern is not
completely dark for positions close to z = 0. Cross sections
of the far-field patterns obtained for ��0 = 10π rad at
positions z = −z0, 0 and z0 are plotted in figure 5, where the
shown area is of 30 × 30 ρ2 mm−2. Note that very different
intensity cross sections are obtained though a very similar
normalized transmittance was obtained in the Z -scan curve for
these points.

The behavior of the peak–valley separation distance and
peak–valley transmittance difference as functions of ��0 are
shown in figure 6. In the first case we can observe that
the separation increases as the nonlinear phase shift does.
However, around ��0 = 4π rad there is a jump that is due
to the oscillations of the intensity in the valley for large phase
shifts. The peak–valley transmittance difference grows as the
nonlinear phase shift does but with a tendency to saturation.

As an example of the nonlocal case with phase shifts larger
than π and that extend beyond the incident intensity figure 7
shows the case m = 1. We present the results obtained for the
normalized transmittance in a Z -scan experiment for different
��0. Once again we can observe the asymmetry in the curve

Figure 7. Z -scan curves for the nonlocal case (m = 1) and ��0 of:
π (thick black line), 2π (square line), 3π (dashed line), 5π (thin
black line) and 10π (dotted line) rad.

for large phase shifts. The peak and valley in this case are
much wider and the amplitude of the peak is larger than in
the local one. Cross sections of the far-field patterns for the
case of ��0 = 10π rad are presented in figure 8, where we
can observe that, although the pattern at z = −z0 is very
similar to that obtained for the local case, the patterns in the
other positions remarkably differ. The area of these sections
is 30 × 30 ρ2 mm−2 as for the case m = 2. The peak–valley
separation distance and normalized transmittance as functions
of ��0 are plotted in figure 9, in the first case the separation
presents sudden jumps due to the intensity oscillations that
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Figure 8. Cross sections of the far-field patterns versus angular position (ρ mm−1) for a nonlocal sample (m = 1) and ��0 = 10π rad at
positions: (a) −z0, (b) 0 and (c) z0.

Figure 9. Numerically calculated (a) �zp−v/z0 and (b) �Tp−v as functions of ��0 for m = 1.

appear in the valley as the phase shift increases. The peak–
valley normalized transmittance increases in a linear way, with
a slope of 0.8, as the nonlinear phase shift grows.

As an example of the nonlocal case with a spatial
extension smaller than the incident intensity we present in
figure 10 the case m = 4, for phase shifts larger than π . The
Z -scan curves are asymmetric as for the other m values. All
the variations in the normalized transmittance are contained in
the interval −6z0 to 6z0. The valley is broader than the peak
and the minimum intensity in the valley never reaches the zero
value for larger phase shifts. The amplitude of the curve is
smaller than that obtained for the local case. The cross sections
of the far-field patterns obtained for positions z = −z0, 0 and
z0 do not differ much, see figure 11.

The peak–valley separation distance and the normalized
transmittance as functions of the nonlinear phase shifts are
plotted in figure 12. In this case the peak–valley separation
distance increases smoothly. Almost the same behavior
is obtained for the peak–valley normalized transmittance
difference. Both curves tend to saturation in a faster way than
for the previous m values analyzed. For large phase shifts the
Z -scan curves and the cross sections of the far-field patterns
present very different features, depending on the m value.

Both peak–valley separation distance and peak–valley
transmittance difference are plotted as functions of the
parameter m for ��0 of π and 5π rad in figure 13. We can
observe that, for ��0 = π rad, the peak–valley separation
distance follows the behavior obtained for small on-axis
nonlinear phase shifts. However, for ��0 = 5π rad the curve

Figure 10. Z -scan curves for the nonlocal case (m = 4) and ��0 of:
π (thick black line), 2π (square line), 3π (dashed line), 5π (thin
black line) and 10π (dotted line) rad.

presents sudden changes for values of m < 2.2. For values of
m > 2.2 the separation decreases smoothly.

The peak–valley transmittance difference curves follow a
similar behavior to that obtained for a small phase shift. For
��0 = 5π rad there is a maximum of 7.39 at m = 0.5 and
the transmittance difference decays in an exponential way for
larger values of m.

4. Experimental results fitting

In this section we present the fittings that can be obtained
with the model presented for similar experimental conditions

6
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Figure 11. Cross sections of the far-field patterns versus angular position (ρ mm−1) for a nonlocal sample (m = 4) and ��0 = 10π rad at
positions: (a) −z0, (b) 0 and (c) z0.

Figure 12. Numerically calculated (a) �zp−v/z0 and (b) �Tp−v as functions of ��0 for m = 4.

Figure 13. (a) �zp−v/z0 and (b) �Tp−v as functions of m for ��0 of: π (solid line) and 5π (square line) rad.

but different kinds of nonlinear media. In order to apply the
model to the experiments we assume a thin sample and use
the on-axis and far-field detection approximations. In the first
case we present the experimental results reported in [29] for a
dyed solution using a cw illumination from an He–Ne laser at
633 nm with a beam waist of w0 = 53 μm. The behavior of
the Z -scan curves for different incident powers (figure 6 [29])
of 6.6, 4.5, 2.8, 2.1 and 1.5 mW are shown in figure 14. Using
our model with m = 0.6 and a beam waist of w0 = 67 μm
a good correspondence was obtained. The respective phase
changes for the simulations were the following ��0: −7.2,
−3.5, −2.8, −1.9 and −1.4 rad. Due to the experimental
conditions it is well accepted that for this material the exhibited
nonlinearity must be thermal [29].

The value of the parameter m used for fitting the
experimental results predicts a �zp−v/z0 of 2.2 for small ��0,

which is larger than that assumed in [29]. However, the model
presented here produces a better fit with the experimental
results for the different incident powers. Note that the value
used for ��0 in rad is very close to the value of the incident
intensity, demonstrating that they are directly related. In order
to exhibit the agreement of the empirical formula (9), for small
values of ��0, in figure 15 we show the same experimental
results, of figure 14, fitted with equation (9), for m = 0.6
and ��0 : −2.8 (gray dashed line), −1.9 (thin black line)
and −1.4 (dotted line) rad. We can observe that for ��0 :
−1.9 and −1.4 rad the fitted curves adjust very well with the
experimental results. For ��0 = −2.8 rad there is not a
good correspondence with the experimental results, due to the
formula (9) not being adequate for large phase shifts.

As a second set of experimental results to be adjusted
with the model, we present that reported in [32], where

7



J. Opt. 13 (2011) 085203 E V Garcia Ramirez et al

Figure 14. Experimental results reported in [29] figure 6, for a dyed
solution illuminated with an He–Ne laser beam at 633 nm and the
following incident powers: 6.6 (dot), 4.5 (circle), 2.8 (square), 2.1
(+) and 1.5 (triangle) mW. Lines are the best fitting obtained with
m = 0.6 and ��0: −7.2 (black), −3.5 (square line), −2.8 (gray
dashed line), −1.9 (thin black line) and −1.4 (dotted line) rad.

Figure 15. Experimental results reported in [29] figure 6, for a dyed
solution illuminated with an He–Ne laser beam at 633 nm and the
following incident powers: 6.6 (dot), 4.5 (circle), 2.8 (square), 2.1
(+) and 1.5 (triangle) mW. Lines are the fitting curves obtained with
empirical equation (9) for m = 0.6 and ��0: −2.8 (gray dashed
line), −1.9 (thin black line) and −1.4 (dotted line) rad.

a sample of 5CB liquid crystal with methyl red dye in a
planar configuration is characterized using a cw He–Ne laser
beam at 633 nm with a beam waist of w0 = 20 μm.
This sample presented Z -scan curves that depend on the
incident polarization: parallel to the director vector, the
sample exhibits a negative nonlinear behavior and, with
orthogonal polarization, the sample exhibits a positive one.
The experimental results for different incident polarizations
([32], figure 1) are shown in figure 16 for an incident power of
4 mW. In this case the experimental results can be fitted using
a parameter value of m = 1 and two different values of the
maximum photoinduced phase shift in the sample, one for the
negative response of ��0− = −6.6 rad and ��0+ = 0.3 rad
for the positive case. The beam waist was assumed to be of
16 μm. Note that the fitting for the curve at zero degrees
reproduces very well the experimental points for values of
z < 0.3 cm. However, some discrepancies appear for values
of z > 0.3 cm. In this case we think that more than one

Figure 16. Z -scan curves for a planar cell of dye doped 5CB liquid
crystal (figure 1, [32]) as a function of the incident polarization: 0◦
(dot), 30◦ (circle), 60◦ (square) and 90◦ (+), with respect to the
director vector. Continuous lines are fittings obtained for m = 1 and
polarizations of: 0◦ (thick black line), 30◦ (dashed line), 60◦ (dotted
line) and 90◦ (thin black line).

Figure 17. Z -scan curves obtained with m = 2 (thick line) and
m = 1 (thin line). Black dots are experimental results for a
polarization of 0◦ (figure 1, [32]).

nonlinear response is exhibited by the sample and a more
elaborated model must be proposed in order to obtain a better
correspondence with the experiment. As a comparison with the
fitting, considering that the response of the material is local,
we present the best fitting for m = 2 and that obtained with
m = 1, see figure 17. We notice that our model has an overall
better fitting compared to that corresponding to the local case
of m = 2.

Finally, with the model it is also possible to describe qual-
itatively experimental results reported for gold nanoparticles
in cyclohexanone, under cw radiation at 532 nm [33]. The
ringed far-field patterns and Z -scan curve with large amplitude
were obtained. The corresponding numerical results are shown
in figures 18 and 19 for values of m = 0.4 and ��0 =
−9.5π rad. In [33] the author mentions that they tried to model
their experimental results using the aberrant thermal lens
model. However, the simulations differ from the experimental
results. With our model the correspondence between the
Z -scan curve and the experimental results, reported in [33]
figure 9, is very good along the amplitude of the curve and the
position of the maxima and minima. Note that the cross section
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Figure 18. Numerical cross sections of the far-field patterns versus angular position (ρ mm−1) for a sample located at the waist of a Gaussian
beam with ��0 of: (a) −10π , (b) −20π and (c) −30π rad for m = 0.4.

Figure 19. Numerical Z -scan curve obtained for a sample with
��0 = −9.5π rad and m = 0.4.

obtained numerically and the experimental results are in good
correspondence considering that the phase and the power are
directly related ([24], figure 10).

5. Conclusions

In this paper we have presented a simple model to calculate,
in a numerical way, the on-axis far-field intensity in a Z -
scan experiment or the far-field pattern in a spatial self-
phase modulation experiment, where a Gaussian beam was
used and a thin nonlocal nonlinear medium with a refractive
nonlinearity was analyzed. We demonstrate that the peak–
valley separation distance and the transmittance difference in
a Z -scan experiment depended on the locality in the nonlinear
response of the sample. The formulae obtained in the literature
with different approaches for the normalized transmittance are
valid only for the local case. When the material presents
a nonlocal response, then different dependences for �zp−v

and �Tp−v as functions of ��0 are obtained, according
to our model. With this model it was possible to adjust
numerically, with a good correspondence, experimental results
for large phase shifts and a large nonlocal nonlinear response
for different kinds of materials. The model can be used to
calculate off-axis or eclipsing Z -scans. Materials with more
than one nonlocal process can also be considered. The model
presented here can be extended in order to consider nonlinear

absorption and the influence of more than one effect in the
nonlinear response of the material.
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