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We show that, by means of a right-unitary transformation, the fully quantized Landau–Zener Hamiltonian
in the weak-coupling regime may be solved by using known solutions from the standard Landau–Zener
problem. In the strong-coupling regime, where the rotating wave approximation is not valid, we show
that the quantized Landau–Zener Hamiltonian may be diagonalized in the atomic basis by means of
a unitary transformation; hence allowing numerical solutions for the few photons regime via truncation.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The Landau–Zener (LZ) problem [1–3] consists of a two-level
system whose parameters are varied so that an anti-crossing of
energy levels occurs. The transition between two energy states at
an avoided level crossing in two- and multi-level systems is one
of the few exactly solvable problems of time-dependent quantum
evolution [4–7]. Dynamics in atomic, molecular and mesoscopic
systems can be described by the LZ process; see, for example, ref-
erences within [4,5]. Recently, experimental realizations of many-
body generalizations of LZ dynamics have been shown with ul-
tracold atoms [8] and theoretically analyzed considering strongly
correlated bosons under fast sweeps [9]. The use of an interacting
BEC driven in a bichromatic optical lattice has also been proposed
as a realization of many-body nonlinear LZ dynamics [10,11].

In particular, there exists an approximate solution for a non-
interacting many-body generalization of the LZ problem, includ-
ing coupling to a quantized field, suggesting that many-body LZ
physics can be profoundly different from the single two-level sys-
tem interacting with a classical field case [12]. Motivated by these
results, we analyze the LZ problem of the one two-level system
coupled to a quantized field. First, we introduce a quantized LZ
model and propose a realization in circuit quantum electrodynam-
ics (circuit-QED) where weak- and strong-coupling regimes can
be obtained; we also discuss plausible realizations of a formal
many-body generalization of the model. Next, we present a right-
unitary-transformation scheme to diagonalize the proposed quan-
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tized LZ model in the field basis under weak-coupling and show
that the exact time evolution of the system is directly related to
solutions of the standard LZ problem. Finally, we show a parity-
related-transformation scheme to diagonalize the proposed quan-
tized LZ model in the two-level system basis under strong-coupling
and show that the resulting infinite set of differential equations is
amenable for numerical solutions for a few starting excitations in
the field.

2. Mathematical model and physical realization

A two-level system, that is, a qubit, driven by a quantized field
is described by the model Hamiltonian,

Ĥ D F = h̄

2
ω0σ̂z + h̄ωâ†â + h̄g

(
â + â†)σ̂x, (1)

where the Pauli matrices associated to the qubit are given by the
operators σ̂ j , with j = z,±, and the symbol â (â†) is the creation
(annihilation) operator of the quantized field. The qubit two-level
transition and the field frequencies are given by ω0 and ω, respec-
tively, and the qubit–field coupling by the parameter g .

In the weak-coupling regime, where the values of the qubit-
field coupling are at least an order of magnitude less than the
qubit transition frequency, g � 0.1ω0, the rotating wave approxi-
mation (RWA) is valid and the Jaynes–Cummings (JC) model [13],
in units of h̄, describes the system,

Ĥ J C = ω0

2
σ̂z + ωâ†â + λ

(
â†σ̂− + âσ̂+

)
. (2)

The excitation number N̂ = â†â + σ̂z/2 is conserved by the JC
model, [N̂, Ĥ J C ] = 0. Hence in a frame defined by the conserved
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excitation number rotating at the field frequency, ω, by considering
a time independent coupling, λ, and a time dependent detuning
between the qubit and the field frequency given by the original
Landau–Zener (LZ) process, Δ = ω0 − ω = −τω0, it is possible to
write a quantized LZ, or LZ–JC Hamiltonian, in units of h̄ω0,

Ĥ = −τ σ̂z + g
(
â†σ̂− + âσ̂+

)
, (3)

where a scaled time τ = v2t and according coupling g = λ/v2

has been used. This particular choice of parameters means that
the driving field is detuned to the blue of the qubit transition,
ω = (1 + τ )ω0 = (1 + v2t)ω0; the positive constant v2 is just
the steepness of the linear frequency ramp. Choosing red detun-
ing instead of blue is equivalent to replace τ → −τ in Eq. (3).
The crossing of the spectra is given at τ → 0 where resonance is
reached as ω0 = ω. Notice that the quantized field frequency may
be kept constant while adequately detuning the qubit transition.

A superconducting qubit coupled to a strip line resonator [14–
16] may be described by the quantized LZ Hamiltonian in Eq. (3)
when the transition frequency of the charge (flux) qubit is var-
ied linearly in time by a driving charge (magnetic flux) leading
to ω0 = (1 − τ )ω. Furthermore, a circuit-QED implementation may
allow the strong coupling needed to go beyond the RWA [17]. For
simplicity, our analysis of the strong coupling case will use the
Hamiltonian, in units of h̄ω,

Ĥc = τ̃ σ̂z + â†â + g
(
â + â†)σ̂x, (4)

where the transition frequency of the qubit is tuned by an external
charge (magnetic field) to vary linearly in time as τ̃ = u2t; again,
the positive constant u2 is just the steepness of the driving ramp.
In this model, the blue (red) detuning between the field and the
qubit is provided by τ < 1 (τ > 1), and resonant driving is ob-
tained at τ = 1.

A BEC in an asymmetric double well trap [18], where the depth
of one of the wells is made to vary linearly in time, may be de-
scribed by a nonlinear version of the standard two-level Landau–
Zener process. In the mean-field approximation, classical dynamics
of nonlinear LZ tunneling in Bose–Einstein condensates (BEC) has
been studied and separated tunneling defined by the fixed points
of the system found [19]. A two-modes BEC driven by a quantized
microwave field delivers a quantum version of the condensate in
an asymmetric double-well model [20,21]; the modes may be de-
fined by two hyperfine structures of the ground state of a given
atomic species, the time dependent detuning is given by the de-
tuning between the qubit transition frequency and the driving
field, and the nonlinearity may be tuned down by Feschbach res-
onances and neglected. Such considerations deliver what we will
call a Landau–Zener–Dicke (LZD) Hamiltonian,

Ĥ L Z D = −τ Ŝ z + gN−1/2
q

(
â† Ŝ− + â Ŝ+

)
, (5)

where the angular momentum basis related to angular momentum
operators Ŝ j , with j = z,±, describes the ensemble containing Nq

qubits. Also, the model in Eq. (5) may describe the effective motion
of a laser driven condensate, under the two-mode approximation,
coupled to an optical cavity [22–24], when the detuning between
the laser pump and cavity frequencies with respect to the differ-
ence between the energies of the two-lowest-momentum modes
is set to vary linearly in time. While an approximate solution for
the LZ problem is known for the LZD model [12], an exact solution
for its time evolution is feasible but, at least for the time being,
we restrict our analysis to the models of the one qubit within
and without the rotating wave approximation described by Eqs. (3)
and (4), respectively.

3. Diagonalization in the field basis

In order to provide a time evolution operator for the quantum
Landau–Zener Hamiltonian within the rotating wave approxima-
tion, Eq. (3), we diagonalize it in the field basis by using the
Susskind–Glogower [25] operators,

V̂ = (
â†â + 1

)−1/2
â, (6)

which are right-unitary, that is, V̂ V̂ † = 1 and V̂ † V̂ = 1 − |0〉〈0|.
Their action on a Fock state of the number basis is given by V̂ |n〉 =
|n − 1〉 and V̂ †|n〉 = |n + 1〉.

Via the Susskind–Glogower operators, the LZ–JC Hamiltonian in
Eq. (3) may be re-written as,

Ĥ = τ Ĥ0 + T̂ † Ĥ L Z T̂ , (7)

where the auxiliary, Ĥ0, and LZ-like, Ĥ L Z , Hamiltonians are

Ĥ0 = (I − σ̂z)|0〉〈0|/2, (8)

Ĥ L Z = −τ σ̂z + g
(
â†â + 1

)1/2
σx (9)

and the right-unitary transformation T̂ is defined by [26–28]

T̂ = [
I − σ̂z + (I − σ̂z)V̂

]
/2. (10)

Notice that no approximation has been made in re-writing Eq. (3)
as Eq. (7). If a semi-classical quantization of the field were fol-
lowed, like that proposed in Ref. [29] for time independent JC and
Dicke models and only valid for coherent states of the field, an ap-
proximate model lacking the Ĥ0 term would be obtained.

As the auxiliary Hamiltonian Ĥ0 commutes with the trans-
formed LZ-like Hamiltonian, T̂ † Ĥ L Z T̂ , at any given time,
[τ1 Ĥ0, T̂ † Ĥ L Z (τ2)T̂ ] = 0, and using the fact that [T̂ † Ĥ L Z (τ1)T̂ ,

T̂ † Ĥ L Z (τ2)T̂ ] = T̂ †[Ĥ L Z (τ1), Ĥ L Z (τ2)]T̂ , it is possible to write the
time evolution operator of the system described by Eq. (3) as

Û (τ ) = Û0(τ )T̂ †Û L Z (τ )T̂ ; (11)

where it is trivial to find Û0(τ ) = e−iτ
∫

Ĥ0 dt = e−iτ 2 H0/2 due to the
fact that [τ1 Ĥ0, τ2 Ĥ0] = 0.

Notice that the right-unitary transformation T̂ acting on the
dressed state basis yields,

T̂
(
cn,0|n + 1,0〉 ± cn,1|n,1〉) = |n〉(cn,0|0〉 ± cn,1|1〉), (12)

where the shorthand notation |n, x〉 ≡ |n〉|x〉 ≡ |n〉field ⊗|x〉atom with
n = 0,1,2, . . . and x = 0,1, has been used. The time evolution op-
erator for the LZ-like process, Û L Z (τ ), in the dressed state basis is
given by the following set of coupled differential equations,

i∂τ cn,1(τ ) + τ cn,1(τ ) − g(n + 1)1/2cn,0(τ ) = 0,

i∂τ cn,0(τ ) − τ cn,0(τ ) − g(n + 1)1/2cn,1(τ ) = 0, (13)

where the shorthand notation ∂τ · denotes the partial derivative
with respect to the scaled time τ . Notice that this differential sys-
tem is equivalent to that given by the standard two-level Landau–
Zener process [4], with the difference that the coupling between
the two levels, g , is enhanced by a factor (n + 1)1/2 due to the
quantized field.

The system of coupled differential equations separates into,

[
∂2
τ + τ 2 + g2(n + 1) − i

]
cn,1(τ ) = 0,[

∂2
τ + τ 2 + g2(n + 1) + i

]
cn,0(τ ) = 0, (14)

which might be reduced to well-known differential equations
accepting Whittaker functions, parabolic cylinder functions, and
confluent hypergeometric functions of the first kind as solutions



Author's personal copy

3772 B.M. Rodríguez-Lara et al. / Physics Letters A 375 (2011) 3770–3774

[30–33]. The latter will be preferred for the sake of simplicity
at t = 0; that is, even solutions evaluate to a nonzero constant
while odd evaluate to zero. The properties of the hypergeometric
function of the first kind, 1 F1(·, ·, ·), yield the time evolution for
the amplitudes, up to a normalization and initial conditions fac-
tor,

c1,e(τ ) = e−iτ 2/2
1 F1

(
1

2
+ ig2

n

4
,

1

2
, iτ 2

)
,

c1,o(τ ) = −ignτe−iτ 2/2
1 F1

(
1 + ig2

n

4
,

3

2
, iτ 2

)
,

c0,e(τ ) = e−iτ 2/2
1 F1

(
ig2

n

4
,

1

2
, iτ 2

)
,

c0,o(τ ) = −ignτe−iτ 2/2
1 F1

(
1

2
+ ig2

n

4
,

3

2
, iτ 2

)
, (15)

where the functions imply time and photon number dependence,
cx,p(τ ) ≡ cx,p(g,n, τ ) with x = 0,1 and p = e,o, the auxiliary char-
acteristic values are defined as gn = g(n+1)1/2. The time evolution
operator Û L Z is defined by the matrix elements,

U (i, j)
L Z = ui, j/γ , n → n̂ (16)

with

u1,1 = c0,e(τ0)c1,e(τ ) − c0,o(τ0)c1,o(τ ),

u1,2 = c1,e(τ0)c1,o(τ ) − c1,o(τ0)c1,e(τ ),

u2,1 = c0,e(τ0)c0,o(τ ) − c0,o(τ0)c0,e(τ ),

u2,2 = c1,e(τ0)c0,e(τ ) − c1,o(τ0)c0,o(τ ), (17)

where ui, j ≡ ui, j(t, t0, gn̂) and the normalization factor is given by

γ = [
c0,e(τ0)c1,e(τ0) − c0,o(τ0)c1,o(τ0)

]
, (18)

with the number operator defined by n̂ = â†â. The time evolution
operator Û L Z is exact, no approximation has been done.

As mentioned before, the presence of the quantized field en-
hances the qubit–field interaction simulating a standard two-
level LZ process with effective coupling gn̂; this can be observed
graphically from the time evolution of the population differ-
ence,
〈
σz(τ )

〉 = 〈
ψ(τ0)

∣∣Û †(τ )σzÛ (τ )ψ(τ0)
〉

= 〈
ψ(τ0)

∣∣T̂ †Û †
L Z (τ )σzÛ L Z (τ )T̂

∣∣ψ(τ0)
〉
. (19)

For the sake of historical comparison, Fig. 1(a) shows the
time evolution of the population difference, 〈σz(τ )〉, in the con-
text of the original LZ process where the interaction starts at
τi → −∞. Initial states given by |ψ(τi → −∞)〉 = |n, g〉 with
n ∈ {|1〉, |11〉, |31〉, |101〉} are considered. The results are exact nu-
merics from Eq. (19) by using Eq. (16). Fig. 1(b) shows the finite
time effect described by the exact time evolution. Initial conditions
are the same described above, but for an initial time of interaction
τ0 = −10. As expected [4], the population difference oscillates as
soon as the finite time interaction starts.

Fig. 2 shows the asymptotic behavior for the excited state
probability, Pe , for the symmetric crossing with starting (ending)
times τ0 → −∞ (τ → ∞) and the asymmetric crossing given by
τ0 → −10 (τ → ∞). The qubit is initially taken in the ground state
and the field at an arbitrary Fock state. The probabilities are cal-
culated from the asymptotic expansion of Eq. (19), via the parity
and asymptotic properties of the hypergeometric function [31], and
both yield the expression

Pe(τ → ∞) = (
1 + 〈

σz(τ → ∞)
〉)
/2 ≈ 1 − e−π g2

n , (20)

Fig. 1. (Color online.) Exact evolution of the population difference 〈σz〉, Eq. (19), for
interactions starting at time (a) τ0 → −∞ and (b) τ0 = −10 under weak coupling
g = 0.1ω0 and initial state |ψ0〉 = |n, g〉 with n = 1 (solid black), n = 11 (dashed
blue), n = 31 (dotted red) and n = 101 (dot-dashed green).

Fig. 2. (Color online.) Asymptotic probability to find the qubit in the excited
state, Pe(τ → ∞), for the symmetric crossing defined by a starting (ending) time
τ0 → −∞ (τ → ∞) and the asymmetric crossing defined by τ0 → −10 (τ → ∞)
under weak coupling g = 0.1ω0 and initial state |ψ0〉 = |n, g〉. Plots are calculated
both with the analytical asymptotic expansion given by Eq. (20) and from numer-
ics of the exact evolution, Eq. (19) by substituting the hypergeometric function
by its asymptotic expansion up to third order, with initial times τ0 → −106 and
τ0 → −10 and final time τ → 106 (plots overlap).

which is equivalent to the tunneling probability predicted in the
standard LZ process. The tunneling probability is enhanced by the
number of photons in the quantized field as gn = g(n + 1)1/2.

The exact time evolution operator found in this section de-
scribes any given set of parameters involving initial system state,
weak coupling, initial and final time. Fig. 3 shows the time evolu-
tion of the population difference, 〈σz(τ )〉, in a purely asymmetric
case starting from the crossing. The qubit is initialized in the ex-
cited state |e〉 and the field in the Fock states n ∈ {0,10,30,100};
short and long interaction times are shown in subfigures Fig. 3(a)
and (b), respectively. In the asymptotic infinite time, the probabil-
ity of finding the qubit in the excited state is

Pe(τi = 0, τ f → ∞) ≈ (
1 ± e−π g2

n/2)/2, (21)
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Fig. 3. (Color online.) Exact evolution of the population difference 〈σz〉, Eq. (19), for
interactions starting at time τ0 = 0 under weak coupling g = 0.1ω0 and initial state
|ψ0〉 = |n, e〉 with n = 0 (solid black), n = 10 (dashed blue), n = 30 (dotted red) and
n = 100 (dot-dashed green) for (a) short and (b) long interaction times.

Fig. 4. (Color online.) Asymptotic probability to find the qubit in the excited state,
Pe(τ → ∞), for the interaction defined in Fig. 3 starting from initial states given
by |ψ0〉 = |n, e〉 (solid line) and |ψ0〉 = |n, g〉 (dashed line). Plots are calculated both
with the analytical asymptotic expansion given by Eq. (21) and from numerics of the
exact evolution, Eq. (19) by substituting the hypergeometric function by its asymp-
totic expansion up to third order, with τ → 106 (plots overlap).

depending if the qubit starts in the excited (plus sign) or the
ground state (minus sing). This probability is plotted in Fig. 4 for
the qubit starting in both the excited and the ground state.

4. Diagonalization in the atomic basis

For moderate and strong coupling, g > 0.1ω0, the rotating wave
approximation is not valid and the complete Hamiltonian in Eq. (4)
has to be considered. Via the unitary transformation,

R̂ = e−iπ(σ̂x−1)â†â/2, (22)

the complete Hamiltonian in Eq. (4) becomes diagonal in the qubit
basis,

Ĥ R = R̂† ĤC R̂ = τ σ̂z cos
(
π â†â

) + â†â + g
(
â + â†). (23)

The use of the unitary transformation in Eq. (22) is equiva-
lent to consider a parity chain basis and the corresponding cre-
ation/annihilation operators as proposed in Ref. [34] for the time
independent qubit–field interaction in the strong-coupling regime.
It is straightforward to see the relation between these two ap-
proaches from

R̂†âR̂ = âeiπ(σ̂x−1)/2 = âσ̂x, (24)

R̂†â† R̂ = â†e−iπ(σ̂x−1)/2 = â†σ̂x, (25)

R̂†σ̂z R̂ = σ̂z cos
(
π â†â

) + iσ̂y sin
(
π â†â

) = σ̂z cos
(
π â†â

)
= (−1)â†âσ̂z, (26)

as the parity operator, Π = (−1)â†âσz , in the basis defined by the
unitary Eq. (22) is given by

R̂†Π R̂ = (−1)â†â R̂†σz R̂ = σz. (27)

That is, the complete Hamiltonian Eq. (23) conserves parity,
[R̂†Π R̂, R̂† ĤC R̂] = [σ̂z, Ĥ R ] = 0.

By moving into the rotating frame defined by the free field,
U F (τ ) = e−ia†aτ , the dynamics are given by the Hamiltonian,
H R F = H R0 + H R I , with

H R0 = τ σ̂z cos
(
π â†â

)
,

H R I = g
(
âeiτ + â†e−iτ )

. (28)

The first of these terms, H R0, is diagonal in both the qubit and
Fock basis and commutes with itself at different scaled times,
[H R0(τ1), H R0(τ2)] = 0; that is, it is possible to use a unitary trans-
formation,

U0(t) = e−iτ 2σ̂z cos(π â†â)/2, (29)

such that the system is described by

H R F U = g
(
âeiτ + â†e−iτ )

e−iτ 2σ̂z cos(π â†â). (30)

This time dependent Hamiltonian produces two infinite sets of
coupled first order differential equations for the field, one for each
qubit state x ∈ {0,1},

i∂τ cx,0(τ ) = ge−iτ e∓iτ 2
cx,1(τ ), (31)

for n = 0 and

i∂τ cx,n(τ ) = gn1/2eiτ e±iτ 2(−1)n−1
cx,n−1(τ )

+ g(n + 1)1/2e−iτ e±iτ 2(−1)n+1
cx,n+1(τ ) (32)

for n � 1; for the sake of simplicity, dimension has been set to
units h̄ω. The notation |φ〉 = R̂|ψ〉 = ∑

x,n cx,n(τ )|x,n〉 has been
used. For Fock states with photon number m, the differential set
defined by Eq. (32) may be truncated at an arbitrary large ñ � m,

i∂τ cx,ñ(τ ) = n1/2eiτ e±iτ 2(−1)ñ−1
cx,ñ−1(τ ). (33)

This is particularly helpful for initial states with small number of
photons, in these cases numerical solutions may be given. Fig. 5
shows numerics for the population difference,
〈
σz(τ )

〉 = 〈
ψ(τ )

∣∣σz cos
(
π â†â

)∣∣ψ(τ )
〉
. (34)

An initial state |ψ0(τ = 1)〉 = |0, e〉 is taken and the set of coupled
differential equations is truncated at length one hundred, that is,
m = 100. Qubit–field couplings in the range g ∈ {0.1,1,3,10}ω are
considered. The initial time τ = 1 is chosen to emulate the case
pictured in Fig. 3; both systems start from resonance, ω0 = ω. The
black solid line in Figs. 3 and 5 represents identical initial con-
ditions, |ψ0〉 = |0, e〉 and coupling g = 0.1ω and deliver similar
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Fig. 5. (Color online.) Numerical time evolution of the population difference 〈σz〉,
Eq. (34), for interactions starting at time τ0 = 1 under couplings g = 0.1ω (solid
black), g = 1ω (dashed blue), g = 3ω (dotted red) and g = 10ω (dot-dashed green)
and initial state |ψ0〉 = |0, e〉. For the sake of comparison, the solid black line in this
figure corresponds to initial conditions and parameters identical to the solid black
line in Fig. 3.

dynamics. The rest of the couplings treated in Fig. 5 show dynam-
ics similar to those under the RWA, Eq. (7), for small normalized
times, τ 
 1, and, then, the coherent oscillations break due the
action of the counter-rotating terms, as expected.

5. Conclusion

We have presented a right-unitary approach to solve the qubit–
quantized-field interaction under the rotating wave approximation
with frequency detuning varying linearly in time, Eq. (3). The
model may be realized in circuit-QED [14]. We have diagonalized
the model Hamiltonian, Eq. (3), in the quantized field basis and
shown that the procedure to obtain the nontrivial ingredient of
the evolution, Û L Z (t) in Eq. (11), is already known from the inter-
action of a classical field with a qubit [4]. The presented solution
is exact. Its analytical closed form allows its use in modular sce-
narios to engineer particular states or Hamiltonians; compare, for
example, with Ref. [4], where different symmetric and asymmetric
crossings in the standard Landau–Zener model are proposed and
may be used for state engineering, or Ref. [35], where modular
cavity-QED is proposed to engineer exotic lattice systems. In the
asymptotic symmetric case equivalent to the standard LZ problem,
the quantized version for initial separable states presents a sim-
ilar asymptotic behavior for the probability of the LZ transition,
Pe(τ → ∞) ≈ 1 − e−π g2

n in Eq. (20), with the distinction of an en-
hanced coupling proportional to the square root of the number of
photons in the initial state, gn̂ = g(n̂ + 1)1/2.

The strong coupling dynamics of the system, where the ro-
tating wave approximation is not valid, has been studied via an
unitary transformation that diagonalizes the Hamiltonian Eq. (4) in

the qubit basis. This operator approach is comparable to defining
a parity chain basis for the system [34]. The system dynamics is
given by an infinite set of coupled differential equations amenable
to numerical solutions, via truncation, for small initial number of
excitations in the quantized field.
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