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A class of nonlinear coherent states related to the Susskind-Glogower (phase) operators is
obtained. We call these nonlinear coherent states as Bessel states because the coefficients that
expand them into number states are Bessel functions. We give a closed form for the displacement
operator that produces such states.
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1. Introduction

Over the years, there has been major effort towards the generation of nonclassical
states in different systems, such as electromagnetic fields, trapped ions, etc. Non-
classical states exhibit less fluctuations or noise than coherent states for certain
observables. This is why coherent states noise is referred to as the standard quantum
limit (SQL). Nonclassical states that have attracted the greatest interest include
macroscopic quantum superpositions of quasiclassical coherent states,'? squeezed
states,® whose fluctuations in one of the quadratures or the amplitude are reduced the
SQL and the particularly important limit of extreme amplitude squeezing, namely,
Fock states.” One may think of several systems that may generalize the harmonic
oscillator in order to produce such NCS, for instance, we may consider time depen-
dent frequencies,” or a type that has recently attracted great interest is to deform the
harmonic oscillator to generate so-called non-linear coherent states,”” that may be
related to g-deformed algebras.”

A g-deformed algebra was used to introduce the idea of quantum g-oscillators, whose

8,9

interpretation®” was as a nonlinear oscillator with a very specific type of nonlinearity,

2 g-deformed algebras are deformed versions of the standard Lie algebras, which are recovered as the
deformation parameter g goes to unity. The basic interest in g-deformed algebras resides in the fact that
they encompass a set of symmetries that is richer than that of the standard Lie algebras. g-deformed
algebras could be a useful tool to describe physical system symmetries that cannot be properly treated
within Lie algebras.
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in which the frequency of vibration depends on the energy of these vibrations through
the hyperbolic cosine function containing a nonlinear parameter. This observation
suggested that there would exist other types of nonlinearities for which the frequency of
oscillation varies with the amplitude in a different manner from the one obtained with
the g-deformed algebra. Such oscillators are called f-oscillators.® One can extend the
notion of coherent states by using f-oscillators to construct f-coherent states (also
called nonlinear coherent states) by means of “deformed” creation and annihilation
operators representing the dynamical variables to be associated with the quantum
f-oscillators.” These operators are defined through

A=af(N)=f(N+1)a, A'=f(N)a'=a'f(N+1), (1)

with @ and a' the annihilation and creation operators for the harmonic oscillator and
N = ata is the number operator.

The importance of studying nonlinear coherent states resides in their physical
consequences such as amplitude squeezing, quantum interferences and the possibility
of having super- or sub-Poissonian statistics. Furthermore, nonlinear coherent states
may be realized in the motion of a trapped ion.%!°

The modelling of quantum mechanical systems with classical optics is a topic that
has attracted interest recently. Along these lines Man’ko et al. have proposed to
realize quantum computation by quantum like systems'' and Crasser et al.'? have
pointed out the similarities between quantum mechanics and Fresnel optics in phase
space. Following these cross-applications, here we would like to show how a non-
linear coherent state may be modelled in a fiber array.'® Therefore, the purpose of the
present work is twofold: to show how to use quantum optics methods to solve clas-
sical optics propagation problems and create a classical system to emulate a quantum
one showing the potential for studying quantum optics with classical systems.

2. Susskind-Glogower Operators

The annihilation and creation Susskind-Glogower'* operators may be defined as

1 1
a, Vi=al (2)
Vaat Vaat’
i.e. as the definitions of deformed creation and annihilation operators given in (1) and
(2). We can verify that VVT =1 but VIV =1 — |0)(0], that gives the commutation
relation [V, V1] =|0)(0|, that makes it complicated to calculate the exponential
(displacement operator by analogy to normal annihilation and creation operators)

V:

D(a) = e?V'=V, (3)

The commutation relation for the Susskind-Glogower operators do not allow the
application of the Baker-Hausdorff formula'® or even to propose an ansatz that would
work properly for the factorization of (3) in the products of exponentials. Instead we
can try to develop the exponential (3) in a Taylor series, and then to evaluate the
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terms (V + V1)*. For instance, for k = 7 we have

(V+VU7=HV+VU@A—<;>mMW+WMW
7
—(JUMWH@@+WM+M@)

7
—(J(WN+W@+MW&HM4+MW+BWD (4)

where {} 4 means antinormal order, that is, to arrange terms such that the powers of
the operator V are always to the left of powers of the operator V. Note that in the

above equation, the term multiplying (;) are all the possible combinations for one
phonon (photon in the case of the quantized electromagnetic field), the term mul-
tiplying (I) are all the combinations for three phonons and the term multiplying
<(7)> all the combinations for five phonons.

3. Coherent States from Application of Displacement
Operator to the Vacuum

We define coherent states as
la)se = D(a)|0). (5)

From (5) we can write”

< (iz)k -1
. _ Liz(V+VT) _ LizV igVT k _ _
liz)se = e [0) = e™Ve™'0) — ;0 02 (n)lk 2n — 2) (6)
where [(k/2) — 1] is the floor function, also called the greatest integer function or
integer value, gives the largest integer less than or equal to (k/2) — 1. We can rewrite
the above equation as

(S

5-1]

> ( " )y, @

o]

|Z.$>SG _ sz szTlo Z

and take the second sum to co as we would add only zeros

. (5 V7T > Z:E - n
liz)s = VeV [0) - Z ()v Vo). ®)

bFor simplicity we use a = iz, however it may be easily generalized to a complex number by a using a
transformation of the form e'a, This is: e#'|iz) g = ea'aeiz(VIVD|0) = |ize®)gq.
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We now exchange the order of the sums

- iV _izV'T e (Zx)k n :
liz) s = eV eV \o>—v2§;mv2 V(o). (9)

By taking m = k — n we finally write

. ixV izV'1 e (ll‘) (mtn) nystm+n
|’LI>SG:€”V€"V ‘0> *V2ZZWV2 VT i+ ‘0>, (10)
n=0 m=0 T
or
O ) ()

3.1. Bessel states

Application of the nonlinear displacement operator to the vacuum then gives

. o0
jiz)sc = D(ix)|0) = == 3 (n + 1)i"J,41(22) ). (12)

n=0
In Fig. 1 we plot the @ function® for several amplitudes. We can see banana shaped
states that are typical of some other nonlinear systems such as Kerr medium.'® It is
also possible to see that for large values of the amplitude a superposition of two
distinguishable states arises. This states will show squeezing in the amplitude.* This

may be clearly seen by plotting the Mandel-Q parameter!”

o_ (@a)?) ~ @) )

(afa)

4 q
(a) (b)

Fig. 1. Q-function for the rotated Bessel state, |z)g¢g = e V™2|iz)ge, with (a) z =1, (b) = =5,
(c) =10, and (d) = = 20.

cQ(B = |(Bla)se|?/m with |3) a coherent state.
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Fig. 2. Mandel-Q parameter for the Bessel state as a function of the amplitude x.

which, if Q < 0 shows sub-Poissonian features. In Fig. 2 we show a plot this par-
ameter, and we can see that the state is sub-Poissonian from zero to large amplitudes
(~12).

4. Non-Linear Displaced Number States and Fiber Arrays

The analogy to a classical optical system comes from noticing that the system we
are solving is similar to the propagation of light through a semi-infinite fiber array.'?
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In such a system, the differential equations to solve are

dF
i—+ co(Bppi+E, 1) =0, n>1, (14)
z
and
L dE,
Zd—;)+CE1 :0, (15)

where F, is the electric modal field in the nth waveguide of the fiber array.
If we consider a non-linear Hamiltonian of the form?

H=nV+VT (16)

with 7 proportional to the Lamb-Dicke parameter'® in the trapped ion-laser inter-
action case. We can solve the Schrodinger equation

dly(t)
i = H|y(t)) (17)

for this Hamiltonian by expanding the wave function into number states

[$(t) = Eab)n), (18)
n=0
where E,(t) are the coefficients of the expansion. By plugging the wave function
above into the Schrodinger equation, we obtain a system of differential equations for
the coefficients E,, (t) which is in fact the system of Eqgs. (14) and (15) with cz = —nt.
Therefore we can borrow the solution by Makris and Christodoulides'?

En(t) = Z’7L7"LJn,—7rz<_277t) =+ Z'"H"Jn+—7n+2(—277t)7 (19)

for an initial condition [1(0)) = |m). Therefore the wave function

o0

|1/)(t)> = Z(Z‘n_m‘]n,—m(_277t) + 7:"ﬁ_m‘]n+m+2(_27775))|n>7 (20)
n=0
corresponds to a non-linear displaced number state, i.e. application of the non-linear
displacement operator to a number state.

5. Conclusion

We have shown that new quantum states, namely Bessel states, may be generated,
for instance, in ion traps by properly engineering a nonlinear Hamiltonian. In this
case it corresponds to a Hamiltonian given by the sum of the Susskind-Glogower
phase operators. We have not considered the effect of dissipation, but it has been

dNonlinear interactions may be properly engineered in ion traps'® taking advantage of the Laguerre
polynomials properties.lg
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shown already that the wave function of an ion or an electromagnetic field may be

reconstructed even though dissipation occurs.?’

Finally, it is worth noting that, although we cannot apply Baker-Hausdorff for-
mula to write the nonlinear displacement operator as a product of exponentials, it is
possible to find the evolution operator, D(—int), for the Hamiltonian (16): from (20)
we have

(Kl (t)) = i T (=20t) + P Ty o (=20) = (kle ™V Djm), (21)

from which the evolution operator may be written as

—int) :ZMZ; (" Ty (=20t) + i Ty (=20t)) [R) Gl (22)
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