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A class of nonlinear coherent states related to the Susskind-Glogower (phase) operators is

obtained. We call these nonlinear coherent states as Bessel states because the coe±cients that
expand them into number states are Bessel functions. We give a closed form for the displacement

operator that produces such states.
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1. Introduction

Over the years, there has been major e®ort towards the generation of nonclassical

states in di®erent systems, such as electromagnetic ¯elds, trapped ions, etc. Non-

classical states exhibit less °uctuations or noise than coherent states for certain

observables. This is why coherent states noise is referred to as the standard quantum

limit (SQL). Nonclassical states that have attracted the greatest interest include

macroscopic quantum superpositions of quasiclassical coherent states,1,2 squeezed

states,3 whose °uctuations in one of the quadratures or the amplitude are reduced the

SQL and the particularly important limit of extreme amplitude squeezing, namely,

Fock states.4 One may think of several systems that may generalize the harmonic

oscillator in order to produce such NCS, for instance, we may consider time depen-

dent frequencies,5 or a type that has recently attracted great interest is to deform the

harmonic oscillator to generate so-called non-linear coherent states,6,7 that may be

related to q-deformed algebras.a

A q-deformed algebrawas used to introduce the idea of quantum q-oscillators, whose

interpretation8,9 was as a nonlinear oscillator with a very speci¯c type of nonlinearity,

aq-deformed algebras are deformed versions of the standard Lie algebras, which are recovered as the

deformation parameter q goes to unity. The basic interest in q-deformed algebras resides in the fact that
they encompass a set of symmetries that is richer than that of the standard Lie algebras. q-deformed

algebras could be a useful tool to describe physical system symmetries that cannot be properly treated

within Lie algebras.
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in which the frequency of vibration depends on the energy of these vibrations through

the hyperbolic cosine function containing a nonlinear parameter. This observation

suggested that there would exist other types of nonlinearities for which the frequency of

oscillation varies with the amplitude in a di®erent manner from the one obtained with

the q-deformed algebra. Such oscillators are called f-oscillators.8 One can extend the

notion of coherent states by using f-oscillators to construct f-coherent states (also

called nonlinear coherent states) by means of \deformed" creation and annihilation

operators representing the dynamical variables to be associated with the quantum

f-oscillators.7 These operators are de¯ned through

A ¼ afðNÞ ¼ fðN þ 1Þa; Ay ¼ fðNÞay ¼ ayfðN þ 1Þ; ð1Þ
with a and ay the annihilation and creation operators for the harmonic oscillator and

N ¼ aya is the number operator.

The importance of studying nonlinear coherent states resides in their physical

consequences such as amplitude squeezing, quantum interferences and the possibility

of having super- or sub-Poissonian statistics. Furthermore, nonlinear coherent states

may be realized in the motion of a trapped ion.6,10

The modelling of quantum mechanical systems with classical optics is a topic that

has attracted interest recently. Along these lines Man'ko et al. have proposed to

realize quantum computation by quantum like systems11 and Crasser et al.12 have

pointed out the similarities between quantum mechanics and Fresnel optics in phase

space. Following these cross-applications, here we would like to show how a non-

linear coherent state may be modelled in a ¯ber array.13 Therefore, the purpose of the

present work is twofold: to show how to use quantum optics methods to solve clas-

sical optics propagation problems and create a classical system to emulate a quantum

one showing the potential for studying quantum optics with classical systems.

2. Susskind-Glogower Operators

The annihilation and creation Susskind-Glogower14 operators may be de¯ned as

V ¼ 1ffiffiffiffiffiffiffiffi
aayp a; V y ¼ ay 1ffiffiffiffiffiffiffiffi

aayp ; ð2Þ

i.e. as the de¯nitions of deformed creation and annihilation operators given in (1) and

(2). We can verify that V V y ¼ 1 but V yV ¼ 1� j0ih0j, that gives the commutation

relation ½V ;V y� ¼ j0ih0j, that makes it complicated to calculate the exponential

(displacement operator by analogy to normal annihilation and creation operators)

Dð�Þ ¼ e�V
y�� �V : ð3Þ

The commutation relation for the Susskind-Glogower operators do not allow the

application of the Baker-Hausdor® formula15 or even to propose an ansatz that would

work properly for the factorization of (3) in the products of exponentials. Instead we

can try to develop the exponential (3) in a Taylor series, and then to evaluate the
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terms ðV þ V yÞk. For instance, for k ¼ 7 we have

ðV þ V yÞ7 ¼fðV þ V yÞ7gA � 7

2

 !
ðj1ih0j þ j0ih1jÞ

� 7

1

 !
ðj3ih0j þ j0ih3j þ j2ih1j þ j1ih2jÞ

� 7

0

 !
ðj5ih0j þ j0ih5j þ j4ih1j þ j1ih4j þ j2ih3j þ j3ih2jÞ ð4Þ

where fgA means antinormal order, that is, to arrange terms such that the powers of

the operator V are always to the left of powers of the operator V y. Note that in the

above equation, the term multiplying
7

2

� �
are all the possible combinations for one

phonon (photon in the case of the quantized electromagnetic ¯eld), the term mul-

tiplying
7

1

� �
are all the combinations for three phonons and the term multiplying

7

0

� �
all the combinations for ¯ve phonons.

3. Coherent States from Application of Displacement
Operator to the Vacuum

We de¯ne coherent states as

j�iSG ¼ Dð�Þj0i: ð5Þ
From (5) we can writeb

jixiSG ¼ eixðVþV yÞj0i ¼ eixV eixV
y j0i �

X1
k¼0

ðixÞk
k!

X½k2�1�

n¼0

k
n

� �
jk� 2n� 2i ð6Þ

where ½ðk=2Þ � 1� is the °oor function, also called the greatest integer function or

integer value, gives the largest integer less than or equal to ðk=2Þ � 1. We can rewrite

the above equation as

jixiSG ¼ eixV eixV
y j0i � V 2

X1
k¼0

ðixÞk
k!

X½k2�1�

n¼0

k
n

� �
V 2nV ykj0i; ð7Þ

and take the second sum to 1 as we would add only zeros

jixiSG ¼ eixV eixV
y j0i � V 2

X1
k¼0

ðixÞk
k!

X1
n¼0

k
n

� �
V 2nV ykj0i: ð8Þ

bFor simplicity we use � ¼ ix, however it may be easily generalized to a complex number by a using a

transformation of the form ei�a
ya. This is: ei�a

yajixiSG ¼ ei�a
yaeixðVþV yÞj0i ¼ jixei�iSG.
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We now exchange the order of the sums

jixiSG ¼ eixV eixV
y j0i � V 2

X1
n¼0

X1
k¼n

ðixÞk
ðk� nÞ!n! V

2nV ykj0i: ð9Þ

By taking m ¼ k� n we ¯nally write

jixiSG ¼ eixV eixV
y j0i � V 2

X1
n¼0

X1
m¼0

ðixÞðmþnÞ

m!n!
V 2nV ymþnj0i; ð10Þ

or

jixiSG ¼ ð1� V 2ÞeixV eixV y j0i: ð11Þ

3.1. Bessel states

Application of the nonlinear displacement operator to the vacuum then gives

jixiSG ¼ DðixÞj0i ¼ � i

x

X1
n¼0

ðnþ 1ÞinJnþ1ð2xÞjni: ð12Þ

In Fig. 1 we plot the Q functionc for several amplitudes. We can see banana shaped

states that are typical of some other nonlinear systems such as Kerr medium.16 It is

also possible to see that for large values of the amplitude a superposition of two

distinguishable states arises. This states will show squeezing in the amplitude.4 This

may be clearly seen by plotting the Mandel-Q parameter17

Q ¼ hðayaÞ2i � hayai2
hayai � 1 ð13Þ

(a) (b)

Fig. 1. Q-function for the rotated Bessel state, jxiSG ¼ e�iN�=2jixiSG, with (a) x ¼ 1, (b) x ¼ 5,

(c) x ¼ 10, and (d) x ¼ 20.

cQð� ¼ jh�j�iSGj2=� with j�i a coherent state.
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which, if Q < 0 shows sub-Poissonian features. In Fig. 2 we show a plot this par-

ameter, and we can see that the state is sub-Poissonian from zero to large amplitudes

(�12).

4. Non-Linear Displaced Number States and Fiber Arrays

The analogy to a classical optical system comes from noticing that the system we

are solving is similar to the propagation of light through a semi-in¯nite ¯ber array.13

(c) (d)

Fig. 1. (Continued)

Fig. 2. Mandel-Q parameter for the Bessel state as a function of the amplitude x.
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In such a system, the di®erential equations to solve are

i
dEn

dz
þ cðEnþ1 þ En�1Þ ¼ 0; n � 1; ð14Þ

and

i
dE0

dz
þ cE1 ¼ 0; ð15Þ

where En is the electric modal ¯eld in the nth waveguide of the ¯ber array.

If we consider a non-linear Hamiltonian of the formd

H ¼ �ðV þ V yÞ ð16Þ
with � proportional to the Lamb-Dicke parameter18 in the trapped ion-laser inter-

action case. We can solve the Schr€odinger equation

i
dj ðtÞi

dt
¼ Hj ðtÞi ð17Þ

for this Hamiltonian by expanding the wave function into number states

j ðtÞi ¼
X1
n¼0

EnðtÞjni; ð18Þ

where EnðtÞ are the coe±cients of the expansion. By plugging the wave function

above into the Schr€odinger equation, we obtain a system of di®erential equations for

the coe±cients EnðtÞ which is in fact the system of Eqs. (14) and (15) with cz ¼ ��t.
Therefore we can borrow the solution by Makris and Christodoulides13

EnðtÞ ¼ in�mJn�mð�2�tÞ þ inþmJnþ�mþ2ð�2�tÞ; ð19Þ
for an initial condition j ð0Þi ¼ jmi. Therefore the wave function

j ðtÞi ¼
X1
n¼0

ðin�mJn�mð�2�tÞ þ inþmJnþmþ2ð�2�tÞÞjni; ð20Þ

corresponds to a non-linear displaced number state, i.e. application of the non-linear

displacement operator to a number state.

5. Conclusion

We have shown that new quantum states, namely Bessel states, may be generated,

for instance, in ion traps by properly engineering a nonlinear Hamiltonian. In this

case it corresponds to a Hamiltonian given by the sum of the Susskind-Glogower

phase operators. We have not considered the e®ect of dissipation, but it has been

dNonlinear interactions may be properly engineered in ion traps18 taking advantage of the Laguerre

polynomials properties.19
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shown already that the wave function of an ion or an electromagnetic ¯eld may be

reconstructed even though dissipation occurs.20

Finally, it is worth noting that, although we cannot apply Baker-Hausdor® for-

mula to write the nonlinear displacement operator as a product of exponentials, it is

possible to ¯nd the evolution operator, Dð�i�tÞ, for the Hamiltonian (16): from (20)

we have

hkj ðtÞi ¼ ik�mJk�mð�2�tÞ þ ikþmJkþmþ2ð�2�tÞ ¼ hkje�i�tðVþV yÞjmi; ð21Þ
from which the evolution operator may be written as

Dð�i�tÞ ¼
X1
m¼0

X1
k¼0

ik�mJk�mð�2�tÞ þ ikþmJkþmþ2ð�2�tÞ� �jkihmj: ð22Þ
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