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Abstract: In this paper, we solve numerically the nonlinear Schrödinger equation for a defocusing Kerr media with initial conditions 
different to the hyperbolic tangent function. We demonstrate that initial conditions with a similar position dependence than the 
hyperbolic tangent evolve to a hyperbolic tangent function, therefore can be considered as (1+1)-D spatial solitons. The waveguide 
induced by these conditions is not single mode; it has the capacity to confine one mode more. 
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1. Introduction 

It is well accepted that spatial solitons are beams that 

create their own waveguide [1, 2]. This kind of beam 

can be generated when some specific field distribution 

propagates in an intensity-dependent refractive-index 

medium. The equation that described the changes in 

amplitude of a field in such media is known as the 

nonlinear Schrödinger equation (NLSE). Exact 

solutions to the NLSE are named as fundamental 

solitons. The soliton can be seen as a beam where 

compensation between nonlinearity and diffraction 

exists. The idea of using spatial solitons to guide other 

beams was suggested theoretically by Chiao et al. [3], 

and proved experimentally by Luther-Davies and Yang 

[4]. Collision of solitons was also suggested in order to 

control a weak beam [5-7]. The use of spatial solitons 

as optical channels for probe beams has a direct effect 

on the development of logical and interconnecting 

devices [8, 9]. 

Experimentally, it can be difficult to have field 
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distributions that correspond to the exact solutions of 

the NLSE in order to generate dark spatial solitons [10]. 

In this paper we present two initial conditions for a 

negative Kerr media that evolve to hyperbolic tangent 

function after propagation. The waveguide properties 

exhibited by these conditions are very similar to that of 

the fundamental dark soliton. 

In the next section we present the equations that are 

going to be solved numerically and the waveguide 

property of the fundamental dark soliton is analyzed. 

Then the new initial conditions are presented and 

propagated. The waveguide properties of the new 

solution are analyzed in its dependence with the initial 

relative position between the soliton and the probe 

beam. Finally conclusions are given.  

2. Theory 

We are going to use the same set of equations 

presented in Ref. [8], where the simultaneous 

propagation of an intense (q1) and a probe (q2) beam 

was described in a Kerr media: 
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where qj is the amplitude of the optical field normalized 

to the maximum intensity Imj, 2
0 0 0 / 2DL n k x  is the 

diffraction length with n0 the linear refractive index, k0 

is the wavenumber, 0x  is the initial beam width and 

2 01/NL mL n k I  is the nonlinear length with 2n  the 

nonlinear refractive index, 01 02/nr n n  and 

01 02/kr k k  where n0j are the linear refractive index, 

koj are wave number where the subscript j is 1 for 

soliton and 2 for the probe beam respectively. In this 

work, by simplicity we utilized 1n kr r  , this means 

that the soliton and the probe beam have the same 

wavelength and direction. It is possible to use values 

different from 1, which depends of the wavelengths 

used and the refractive index presented by the selected 

material, however, the main characteristics of the 

propagation can be obtained with a value of 1. This set 

of equations with a different normalization was used in 

Ref. [8] to analyze the collision of two bright spatial 

soliton and its waveguide properties. 

Eq. (1) is the nonlinear Schrödinger equation, which 

has been studied analytically by the inverse scattering 

method and is well-known that admits two stationary 

solutions soliton type, which are: 

( , ) s e c ( 2 ) e x p ( / 2 )q X Z h X iZ   (3) 

and 

( , ) tan h ( 2 ) ex p ( )q X Z X iZ   (4) 

where q1 = q. These solutions are known as the bright 

and dark solitons, for a positive and negative nonlinear 

refractive index material, respectively. To investigate 

the behavior of the probe beam guided by the 

photoinduced waveguide of the soliton we considered a 

Gaussian beam with the following dependence: 

2
2 ( , ) exp( ( ) )

X h
q X Z

w


    (5)  

where h is the separation between the soliton and the 

probe beam and w  is the initial width of the beam 

with normalized amplitude q2. 

3. Results 

The propagation of a fundamental dark soliton, 

given by Eq. (4), is shown in Fig. 1, where we can see 

that there is not modification of the distribution along 

the propagation distance. Considering a probe beam 

with small amplitude and the same wavelength than the 

soliton, the coupled Eqs. (1) and (2) were solved for 

different separations h between the soliton and the 

probe beam. Both beams are propagated in the same 

direction. Typical results for the evolution of the probe 

beam for different values of h are presented in Fig. 2. 

For h = 0, that is, when the probe beam and the soliton 

are fully overlapped, the waveguide confines totally the 

probe beam as shown in Fig. 2a. The propagation 

distance was of 20 diffractions lengths. 

As it was waited, when h was increased, the amount 

of energy of the probe beam confined in the waveguide 

photoinduced by the soliton beam was reduced. In 

some cases the probe beam realized some oscillations 

both in amplitude and position around of center of the 

soliton as shown in Figs. 2b and 2d. This effect is due 

to the fact that the photoinduced refractive index by the 

soliton changes gradually and the probe beam bounce 

along it. For values of h > 1.5, a minimum in the 

intensity profile of the probe beam was obtained in the 

position corresponding to the soliton (Figs. 2e-2h). A 

similar result  was  previously  reported in Ref. [11],  
 

 
Fig. 1  Propagation of a fundamental dark soliton to 20 
diffraction lengths. 
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Fig. 2  The propagation of a Gaussian probe beam with w = 0.9, for different distances h from the soliton: (a) h = 0, (b) h = 0.5, 

(c) h = 1, (d) h = 1.5, (e) h = 1.7, (f) h = 2, (g) h = 2.5, (h) h = 3. 
 

where an experimental analysis of trapping efficiency 

was made for different launching  angles between the 

soliton and the probe beam. This behavior was called 

“leaky mode” and was explained as the excitation of 

high order modes in the waveguide. However, no 

analytical expression was suggested for such mode. 

Larger separations between the soliton and the probe 

beam demonstrate that only a small portion of the 

probe beam was confined in the photoinduced 

waveguide. In Figs. 3a and 3b, the propagation distance 

was increased in order to demonstrate that some 

portion of the probe beam is confined but did not have 

the incident Gaussian distribution and in the central 

position of the waveguide there is a minimum in 

intensity of the probe beam. It is important to mention 

that the previous results are the same if the analysis is 

made with a fundamental bright soliton to 

photoinduced the waveguide, i,e, the same dependence 

of the probe beam with separation is obtained for 

materials with positive nonlinearity. 

The behavior obtained for the probe beam suggested 

that the waveguide induced by the soliton has the 

property to confine another field distribution different 

from the Gaussian. The behavior obtained in Figs. 

2d-2f seems to be the interference of a Gaussian mode 

with a high order mode. To verify this assumption, we  
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Fig. 3  The propagation of a Gaussian probe beam with w = 0.9, for (a) h = 2.5, (b) h = 3 to 120 diffraction lengths. 
 

 
Fig. 4  (a) Evolution of the initial condition given by Eq. (6) as probe beam with A = 7 and (b) its intensity profiles at the 
beginning (dashed), and end of the propagation (solid line) and profile for soliton (solid circles). 
 

performed the propagation of the soliton with the 

following initial condition for the probe beam: 
2 2

2 ( , ) ex p ( ) ex p ( ).q X Z X X A X= − + −  (6) 

We obtain a behavior as that shown in Fig. 4 that is 

similar to that observed in Figs. 2d-2f.  

However, some part of the light was not confined to 

the waveguide. This result suggests the possibility that 

the next mode was similar to a Hermite-Gauss beam. 

To verify this, we utilized as a probe beam the 

following field distribution: 

21( , ) sec ( )q X Z X h BX=        (7) 

When the soliton and the probe beam given by Eq. (7) 
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were propagated, a very well confined probe beam was 

obtained, without loss in intensity and without change 

in its intensity profile (Fig. 5). 

4. New Soliton-Like Distributions 

Although a mathematical algorithm to find new 

solutions of the NLSE exists [12], we look for 

functions that present a similar amplitude dependence 

with the position than the exact solutions For the 

negative nonlinearity we look for functions with a 

change in sign in the amplitude for positive and 

negative values of the transversal coordinate. Two 

functions were found to fill such requirement: 

12
( , ) tan ( )q X Z cX


   (8) 

2
( , ) .

X
q X Z

X d


  
 (9) 

where c and d are constants related to the width of the 

functions. 

Eqs. (8) and (9) are compared with the field 

distribution  of a  fundamental  dark  soliton  in 

Fig. 6. We can observe that the distributions differ in 

their width and how  they tend to  values far from 

zero. 

For the negative nonlinearity, the evolution of initial 

condition given by Eqs. (8) and (9) is shown in Figs. 7 

and 8, respectively. We can observe how at the 

beginning of the propagation there is the formation of 

two gray channels with small amplitude that 

propagated away the center, leaving at the center a 

fundamental dark soliton. The behavior observed for 

both initial conditions is similar to that obtained when 

the initial width of the fundamental soliton is larger 

than the adequate, giving rise to a pair of gray solitons 

[13]. However, changing width of the initial condition 

given by the Eqs. (8) and (9) was not possible to obtain 

a behavior similar to that obtained for a fundamental 

soliton without the two gray solitons beside. 

The  waveguide  properties of the new soliton-like 
 

 
Fig. 5  (a) Propagation of an initial condition given by Eq. (7) for the probe beam with B = (2)1/2, (b) input (open circles) and 
output profiles (solid line ) for probe beam and profile for soliton (solid circles). 
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Fig. 6  (a) Field amplitude; (b) intensity profiles, for a hyperbolic tangent (solid line), Eq. (8) with c = 3 (open circles) and Eq. 
(9) with d = 0.4 (solid circles). 
 

 
Fig. 7  (a) Propagation; and (b) intensity profiles of input (dashed) and output (solid line) for the analytical solutions given by 
Eq. (8) with c = 3 and profile for soliton (open circles). 
 

distributions are similar to that obtained for the 

fundamental dark soliton in the confinement of the 

probe beam by the central waveguide. The two gray 

solitons presented a small confinement of the light that 

was not comparable to that captured by the central 

channel, as it can be seen in Figs. 9 and 10. 
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Fig. 8  (a) Propagation; and (b) intensity profiles of input (dashed) and output (solid line) for the analytical solutions given by 

Eq. (9) with d = 0.4 and profile for soliton (open circles). 
 

 
Fig. 9  Waveguide properties of the initial condition given by Eq. (9) when the probe beam is separated to a distance h from 
the soliton:(a) h = 0, (b) h = 0.5, (c) h = 1, (d) h = 1.5, (e) h = 1.7, (f) h = 2, (g) h = 2.5, (h) h = 3. 
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Fig. 10  Waveguide properties of the initial condition given by Eq. (9) when the probe beam is separated to a distance h from 

the soliton: (a) h = 2.5, (b) h = 3 to 120 diffraction length. 
 

5. Conclusions 

We present a numerical study of waveguide 

properties of a fundamental (1+1)-D dark spatial 

soliton in a Kerr material, considering as a probe beam 

a Gaussian distribution and different distances between 

this beam and the soliton. Two field distributions for a 

negative nonlinearity are proposed and propagated to 

demonstrate that they evolved to a fundamental dark 

spatial soliton. The waveguide properties of such 

soliton-like distributions were analyzed obtaining the 

same behavior than the fundamental dark soliton. 

The results demonstrate that the waveguide 

photoinduced by the soliton is not single mode. The 

analytical expression of the high order mode confined 

by the waveguide was given. 

References 

[1] A.W. Snyder, D.J. Mitchell, L. Polodian, F. Landouceur, 
Self-induced optical fibers: Spatial solitary waves, Opt. 
Lett. 16 (1991) 21-23. 

[2] A.W. Synder, D.J. Mitchell, Accessible solitons, Science 
276 (1997) 1538.  

[3] R.Y. Chiao, E. Garmire, C.H. Townes, Self-trapping of 
optical beams, Phys. Rev. Lett. 13 (1964) 479. 

[4] B. Luther-Davies, X. Yang, Waveguides and Y junctions 
formed in bulk media by using dark spatial solitons, Opt. 

Lett. 17 (1992) 496-498. 
[5] B. Luther-Davies, X. Yang, Steerable optical waveguides 

formed in self-defocusing media by using dark spatial 
solitons, Opt. Lett. 17 (1992) 1755-1757. 

[6] N. Akhmediev, A. Ankiewicz, Spatial soliton X-junctions 
and couplers, Opt. Commun. 100 (1993) 186-192.  

[7] P.D. Miller, N.N. Akhmediev, Transfer matrices for 
multiport devices made from solitons, Phys. Rev. E 76 
(1996) 4098. 

[8] G.E.T. Cisneros, J.J.S. Mondragon, V.A. Vyloukh, 
Asymmetric optical Y junctions and switching of weak 
beams by using bright spatial-soliton collisions, Opt. Lett. 
18 (1993) 16. 

[9] J.A.A. Lucio, M.M.M. Otero, C.M.G. Sarabia, M.D.I. 
Castillo, S.P. Márquez, G.E.T. Cisneros, Controllable 
optical Y-junctions based on dark spatial solitons 
generated by holographic masks, Opt. Commun. 165 
(1999) 77-82. 

[10] M.M.M. Otero, G.B. Perez, M.L.A. Carrasco, E.M. 
Panameño, M.D.I. Castillo, S.C. Cerda, Interferometric 
generation  of  dark  spatial solitons in a 
photorefractive Bi12TiO20 crystal, Opt. Commun.  258 
(2006) 280-287. 

[11] J.U. Kang, G.I. Stegeman, J.S. Aitchison, Weak-beam 
trapping by bright spatial solitons in AlGaAs planar 
waveguide, Opt. Lett. 20 (1995) 20. 

[12] V.N. Serkin, A. Hasegawa, Novel soliton solutions of the 
nonlinear Schrödinger equation, Phys. Rev. Lett. 85 (2000) 
4502-4505.  

[13] G. Agrawal, Nonlinear Fiber Optics, Academic Press, San 
Diego, 2001.

 




