
Optimum generation of annular vortices using
phase diffractive optical elements

Victor Arrizón,1,* Ulises Ruiz,1 David Sánchez-de-la-Llave,1

Gabriel Mellado-Villaseñor,1 and Andrey S. Ostrovsky2

1Instituto Nacional de Astrofisica, Optica y Electronica, Puebla 72000, Mexico
2Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla 72000, Mexico

*Corresponding author: arrizon@inaoep.mx

Received October 22, 2014; revised January 19, 2015; accepted February 11, 2015;
posted February 18, 2015 (Doc. ID 225489); published March 17, 2015

An annular vortex of arbitrary integer topological charge q can be obtained at the Fourier domain of appropriate
phase diffractive optical elements. In this context we prove that the diffractive element that generates the vortexwith
maximum peak intensity has the phase modulation of a propagation-invariant qth order Bessel beam. We discuss
additional advantages of this phase element as annular vortex generator. © 2015 Optical Society of America
OCIS codes: (050.4865) Optical vortices; (090.1760) Computer holography; (090.1970) Diffractive optics.
http://dx.doi.org/10.1364/OL.40.001173

An optical vortex (OV) is a dark hollow in an optical field,
surrounded by a bright area which possesses a certain
amount of orbital angular momentum (OAM) [1–3]. In
general, it is possible and desirable to generate OVs
immersed in optical fields with arbitrary intensity distri-
butions [4,5]. However, in several applications, e.g.,
optical trapping with OAM transference, it can be con-
venient to employ annular OVs. In the following text
the acronym OV will represent annular OV. In general,
it is advantageous to implement OVs with high efficiency
methods. In addition, one may require control of the
radius and the transverse intensity of an OV, while the
topological charge is arbitrarily changed [6–8].
We propose a method for efficient generation of an OV

with arbitrary integer topological charge q, based on a
diffractive optical element (DOE), whose transmittance
coincides with the phase modulation of a qth order
Bessel beam (BB). This DOE, which is here referred
to as Bessel beam kinoform (BBK), was previously pro-
posed as an efficient generator of such a beam [9–11]. In
this Letter, we prove that the BBK is the phase DOE that
allows the generation of an OV with the maximum pos-
sible peak intensity. This optimum intensity propitiates a
narrow bright annular section and a high intensity gra-
dient in the generated OV. These features may offer
advantages not only in optical trapping, but also in spe-
cial applications of OVs as vortex coronography [12] and
superresolution microscopy [13].
The perfect vortex is defined by its complex amplitude

Bq�ρ;ϕ� � δ�ρ − ρ0� exp�iqϕ� [6], where �ρ;ϕ� denote the
radial and azimuthal coordinates, ρ0 is the vortex radius,
and q is the topological charge. From the mathematical
point of view, the direct method for the exact generation
of the perfect vortex is based on the Fourier transform of
the unbounded qth order BB. However, this unbounded
beam is impossible to obtain in practice. A physically
realizable form of this optical field is the Bessel-Gauss
beam (BGB) with complex amplitude

bq�r; θ� � Jq�2πρ0r� exp�iqθ� exp�−r2∕w2�; (1)

where �r; θ� are polar coordinates and w is the waist
radius of the Gaussian function. The Fourier transform

of the BGB can be expressed as Bq�ρ;ϕ� �
Cq�ρ� exp�iqϕ�, where, omitting a constant phase factor,
Cq�ρ� is the qth order Hankel transform of the radial
factor in Eq. (1), given by

Cq�ρ� � 2π
Z

∞

0
rJq�2πρ0r� exp�−r2∕w2�Jq�2πρr�dr: (2)

The radial modulation Cq�ρ� is a low-pass filtered
version of the delta function δ�ρ − ρ0� in the perfect vor-
tex. Indeed, Cq�ρ� represents an annulus of radius ρ0,
whose bright section has a transverse profile approxi-
mately given by the Fourier transform of the function
exp�−r2∕w2�. The maximum intensity of Cq�ρ�, given by

Iq � jCq�ρ0�j2 � 4π2
�Z

∞

0
rJ2

q�2πρ0r� exp�−r2∕w2�dr
�
2
;

(3)

is obtained considering that the integrand at the right
side of Eq. (2) becomes positive definite only at the radial
coordinate ρ � ρ0.

Next we discuss phase DOEs for the efficient genera-
tion of OVs. To evaluate the intensity profiles of these
OVs, they will be normalized with respect to the peak
intensity I0 [Eq. (3)], of the OV generated with the zeroth
order BGB. In general, the complex amplitude of a physi-
cally realizable OV of radius ρ0 is given by

B�ρ;ϕ� � F�ρ� exp�iqϕ�; (4)

where F�ρ�must show a peak intensity at ρ � ρ0. For the
sake of simplicity and efficiency, we propose the gener-
ation of the OV field, B�ρ;ϕ�, by performing the Fourier
transform of a phase DOE, generated by a spatial light
modulator (SLM), which is illuminated by a Gaussian
beam. We assume that the amplitude of the input
Gaussian beam at the SLM plane is

g�r� � exp�−r2∕w2�; (5)

and that the transmittance of the phase DOE is

April 1, 2015 / Vol. 40, No. 7 / OPTICS LETTERS 1173

0146-9592/15/071173-04$15.00/0 © 2015 Optical Society of America

http://dx.doi.org/10.1364/OL.40.001173


t�r; θ� � exp�iβ�r�� exp�iqθ�; (6)

for a radial function β�r� to be determined. Although we
have assumed a Gaussian beam at the waist plane, we
will note later that it is possible to use a more general
Gaussian field, which includes a phase factor quadratic
in r. Considering that the OV in Eq. (4) is separable in
the radial and azimuthal variables, and that it must be
obtained by the Fourier transform of the field

b�r; θ� � g�r�t�r; θ�; (7)

the DOE transmittance t�r; θ� [Eq. (6)] has been chosen
as a separable function in r and θ. Performing the Fourier
transform of the field b�r; θ� to obtain the OV complex
amplitude B�ρ;ϕ�, one obtains that the radial factor
F�ρ� [in Eq. (4)] is, omitting a constant phase,

F�ρ� � 2π
Z

∞

0
r exp�iβ�r�� exp�−r2∕w2�Jq�2πρr�dr: (8)

The integral in (8) represents the qth order Hankel
transform of the radial factor in b�r; θ�.
It is desirable that the physically realizable OV is made

up of a narrow bright annulus of radius ρ � ρ0. We next
establish the DOE transmittance with a radial phase β�r�
that allows the generation of the OV with the maximum
possible intensity at ρ � ρ0. For brevity, we will refer to
this OV and the radial phase β�r� as the optimum ones. To
establish the optimum radial phase β�r�, we first employ
Eq. (8) to obtain

jF�ρ0�j � 2π

����
Z

∞

0
f pos�r� exp�iβ�r��sgn�Jq�2πρ0r��dr

����;
(9)

where f pos�r� � r exp�−r2∕w2�jJq�2πρ0r�j is a positive
definite function in the integration domain, and “sgn” de-
notes the sign function. Next we apply the continuous
form of the triangle inequality [14] to obtain the relation

jF�ρ0�j ≤ 2π

����
Z

∞

0
f pos�r�dr

����; (10)

where the right side represents an upper bound value for
jF�ρ0�j. Finally, it is straightforward to establish from
Eq. (9) that jF�ρ0�j attains this upper bound value if

exp�iβ�r�� � sgn�Jq�2πρ0r��: (11)

In this case, the transmittance of the phase DOE in
Eq. (6) becomes

t�r; θ� � exp�iqθ�sgn�Jq�2πρ0r��: (12)

So far we have proved that the maximum possible inten-
sity of the OV (with topological charge q) at the radial
coordinate ρ � ρ0 is obtained, with the described
method, by the BBK, whose phase transmittance is speci-
fied by Eq. (12). It is not difficult to understand that other
desirable OV features, such as narrow bright annulus and

high intensity gradient, can be expected as natural con-
sequences of maximizing the OV peak intensity.

Next we evaluate the peak intensity and the full width
at half-maximum (FWHM) intensity of the bright annular
sections in OVs generated by BBKs. Given the analytical
nature of the result proved above, it is not strictly neces-
sary to compare the performance of BBKs with other
phase DOEs. However, to illustrate the optimality of
the BBK regarding the considered features, we also
evaluate another phase DOE, the helical axicon (HA),
which is defined by Eq. (6), with radial phase
β�r� � −2πρ0r. Both the HA and the BBK have been pre-
viously employed for the approximate generation of
BGBs [11]. In the numerical simulations, we will consider
values for the normalized radial coordinate ρ∕ρ0, and the
waist of the Gaussian field in Eq. (5) will be given as
w � Qρ−10 , for different values of Q. The computed OV
intensities are normalized with respect to the intensity
I0, obtained from Eq. (3) for q � 0, which corresponds
to the peak intensity of the OV generated by the BGB
b0�r; θ�, defined in Eq. (1).

In Fig. 1 we illustrate the transverse intensity profiles of
OVs with topological charge q � 0 generated by BBKs
[(a), (c)] and HAs [(b), (d)]. The waist radii of the consid-
ered Gaussian beams arew � 3ρ−10 [(a), (b)] andw � 7ρ−10
[(c), (d)]. As expected, BBKs generate OVs with larger
peak intensities and narrower bright sections than the
OVs generated by HAs with equal parameters. These fea-
tures of the OVs generated by BBKs remain for different
values of the parameters q andw. To justify this assertion,
we computed (for a variety of cases) the intensity gain,
maxfjFq�ρ0�j2∕I0g, equal to the peak value of the normal-
ized intensity profile of OVs and their FWHM values.

In Fig. 2 we show the intensity gains (left plots) and the
normalized FWHMs (right plots) of OVs generated by
BBKs and HAs, for different values of q and w. The nor-
malization of FWHM is made with respect to the OV
radius ρ0. The waist radii of the Gaussian beams are
w � 3ρ−10 [(a), (b)], w � 7ρ−10 [(c), (d)], and w � 10ρ−10

Fig. 1. Transverse intensity profiles of OVs with topological
charge q � 0 generated by (a), (c) BBKs and (b), (d) HAs.
The waist w of the employed Gaussian beam is (a), (b) 3ρ−10
and (c), (d) 7ρ−10 .
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[(e), (f)]. The values of the computed parameters are
marked by circles (BBK) and squares (HA). The larger
intensity gains in OVs generated by BBKs are an ex-
pected result, because of the optimum character of such
DOEs. On the other hand, the computed values for the
FWHM confirm that the OVs generated by BBKs are nar-
rower than the OVs generated by HAs. Besides these re-
sults, the relatively low variation in the gains of OVs
generated by BBKs and the corresponding FWHMs are
remarkable, for different topological charges and a fixed
w. It is noted that both the OV peak intensity and the
FWHM are controlled by the waist radius of the Gaussian
beam used for illumination. In particular, the control of
the FWHM in the OV can be crucial for different applica-
tions of this structured field.
For the experimental generation of OVs with the de-

scribed approach, we employ the optical setup depicted
in Fig. 3. In this setup, the light beam from a He–Ne laser
source (LS) is cleaned and expanded by a spatial filter
(SF), and collimated by a lens (L). The result is a
Gaussian beam (GB) that illuminates a phase spatial light

modulator (SLM). The phase modulation encoded in the
SLM is formed by three factors. The first and second fac-
tors are the phase of the DOE under test, and a quadratic
phase modulation that realizes the Fourier transform.
The third factor is a linear phase modulation, whose pur-
pose is to remove from the OV field the unmodulated
fraction of the light reflected by the SLM. The intensity
of the OV, obtained at the focal plane of the Fourier trans-
forming lens encoded in the SLM, is recorded by a CCD,
which is not shown in the setup.

In our experiment, the waist of the generated Gaussian
beam is not at the plane of the SLM. Thus, the complex
amplitude of this beam presents a quadratic phase modu-
lation (in the radial coordinate) at the SLM plane. This
quadratic phase, whose curvature radius is relatively
large, can be considered together with the quadratic
phase encoded in the SLM. The combined effect of the
two phases is equivalent to a modified Fourier transform-
ing lens, whose focusing power is the sum of powers of
the two quadratic phases.

Since the Fourier transforming lens, encoded in the
SLM, is at the same plane of the function to be trans-
formed, the OV field generated at the focal plane of such
a lens, also presents a quadratic phase modulation in the
radial coordinate. However, this phase modulation does
not affect the intensity profile of the OV, established in
the theoretical analysis.

Figure 4 shows the experimentally recorded intensities
of OVs, of topological charges q � 0 and q � 4, generated
by BBKs and HAs encoded into the phase SLM (Model
PLUTO, Holoeye Photonics LG). The asymptotic radial
period of the generated DOEs was ρ−10 � 208 μm and
the width radius w of the generated Gaussian beam
was approximated to w � 7ρ−10 , at the SLM plane. The
Fourier transforming lens encoded in the SLM, with a
focal length of 50 cm, generates OVs with a diameter
approximated to 3 mm.

Fig. 2. Intensity gain (left) and FWHM (right) in OVs generated
by BBKs (circles) and HAs (squares), for different topological
charges q. The waist radiusw of the Gaussian beam illuminating
the DOEs is 3ρ−10 (top), 7ρ−10 (middle), and 10ρ−10 (bottom).

Fig. 3. Optical setup for generation of OVs at the Fourier
domain of phase DOEs implemented on an SLM.

Fig. 4. Experimentally recorded intensities of OVs, of topo-
logical charges (a), (b) q� 0 and (c), (d) q � 4, generated by
(a), (c) BBKs and (b), (d) HAs, which are illuminated by a Gaus-
sian beam whose width radius was approximately w � 7ρ−10 .

April 1, 2015 / Vol. 40, No. 7 / OPTICS LETTERS 1175



Figure 5 presents the transverse intensity profiles of
the OVs displayed in Fig. 4, normalized respect to the
peak intensity obtained with the BBK for q � 0
[Fig. 5(a)]. The features of the experimental OVs (inten-
sity profile, intensity peaks, and FWHM) are quite similar
to those of the numerically generated OVs [Figs. 1(c) and
1(d)], which also correspond to w � 7ρ−10 . For example,
the FWHM values of the experimental OV profiles in
Figs. 5(a) and 5(b) are 0.045 and 0.083, respectively.
These values show a close coincidence with the corre-
sponding numerical FWHMs (0.042 and 0.084), shown
in Fig. 2(d) for q � 0. The high similitude between the
OVs in Figs. 4(a) and 4(c), and between their correspond-
ing transverse profiles [Figs. 5(a) and 5(c)] confirms
experimentally the low variation of the OVs generated
by BBKs, for different topological charges and fixed
w, which was previously established in the numerical
simulations.
Summarizing, an OV with topological charge q and

radius ρ0 can be generated at the Fourier domain of a
generic phase DOE, which is illuminated by a Gaussian
beam. We proved that the phase DOE that generates the
OV with the maximum possible peak intensity is the
kinoform of the qth order BB, whose transmittance
is sgn�Jq�2πρ0r�� exp�iqθ�.
In numerical simulations and experiments, we illus-

trated the optimum intensity peaks of the OVs generated
by BBKs. For comparison, we also included the results
obtained with HAs. We note that the optical power of
the field transmitted by the generic phase DOE is equal
to the optical power of the Gaussian beam used as an
illumination source. Therefore the OV with the maximum
peak intensity, generated by the BBK, is likely to be

narrower than the OVs generated with other phase DOEs.
We included the computation of the FWHM in OVs
generated by BBKs and HAs, confirming such expected
result. It is also concluded that the narrower OV with the
maximum peak intensity presents necessarily an opti-
mum intensity gradient, which is another desirable attrib-
ute of this field.

In Fig. 2, the relatively low variance in the intensity
gain (and FWHM) of OVs generated by BBKs of different
topological charges, which are illuminated by a common
Gaussian beam, is remarkable. We have found that, in
general, the intensity gains of OVs generated by BBKs,
which are illuminated by a Gaussian beam of waist radius
w � Qρ−10 , present a relatively low variance for topologi-
cal charges q in the range �0; 2Q�. The general validity of
this result can be stated in the base of the analytical ex-
pression for the peak intensity jFq�ρ0�j2. However, such
an analysis is out of the scope of this Letter.

We also evaluated the OVs generated by the phase
DOE with transmittance t�r; θ� � exp�iqθ�, which corre-
sponds to the generic transmittance in Eq. (6) with radial
phase β�r� � 0. The performance of this DOE, regarding
the peak intensity and width of the OVs that it generates,
is poor compared with both the BBK and the HA.

U. Ruiz thanks The Conacyt, Mexico, for its financial
support under Grant No. 245510.
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Fig. 5. Transverse intensity profiles corresponding, respec-
tively, to the OVs displayed in Fig. 4.
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