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a b s t r a c t

Conventional light focusing, i.e. concentration of an extended optical field within a small area around a
point, is a frequently used process in Optics. An important extension to conventional focusing is the
generation of the annular focal field of an optical beam. We discuss a simple optical setup that achieves
this kind of focusing employing a phase plate as unique optical component. It is assumed that the an-
nular focal field is modulated by an azimuthal phase of integer order q that converts the field in a ring
vortex. We first establish the class of beams that being transmitted through the phase plate can be
focused into a ring vortex. Then, for each beam in this class we determine the plate transmittance that
generates the vortex with the maximum possible intensity, which is referred to as optimal ring vortex.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Light focusing, one of the processes more employed in optics, is
usually realized by a lens. An infinitely small focal point cannot be
achieved in free space beam propagation. Even with large aperture
lenses, and infinitely extended beams, the minimum focal field
size is in the order of half the wavelength [1]. Here we discuss
focusing of monochromatic light in an annular focal field, as-
suming that it is modulated by an azimuthal phase of arbitrary
integer order q. The inclusion of the topological charge transforms
the focal field in a ring vortex (RV). This type of structured field
can be useful in several applications, e.g. optical trapping with
orbital angular momentum transference [2–4], lithography [5,6],
high-resolution fluorescence microscopy [7], quantum entangle-
ment [8–10], and vortex coronography [11,12].

As occurs in conventional focusing, the generation of an in-
finitely narrow RV [13–16] is impossible. Therefore, it is important
to establish the optimal approximation to this field that can be
physically implemented. We consider that the optimal RV gener-
ated by a given optical beam is the one with the maximum pos-
sible intensity. The maximum intensity in RVs implies other at-
tributes, as narrow transverse section and high intensity gradient
that may offer advantages in different applications of such fields.

The generation of an optimal RV at the Fourier domain of a
phase diffractive element, which is illuminated by a Gaussian
beam (GB), has been recently reported [17]. In the present com-
munication we discuss the simplest method for annular focusing,
with arbitrary integer order topological charge, of an input beam.
This method employs a phase plate as unique optical component,
which modulates the complex amplitude of the beam. The RV is
obtained, by free propagation of the modulated beam, at a specific
distance from the plate. In Section 2, as first step, we establish the
class of beams that can generate a RV using this simple method.
Then, we determine the phase plate transmittance required to
achieve the optimal annular focusing of the beams in this class. In
Section 3 we illustrate the features of optimal RVs, employing both
numerical simulations and experiments. In Section 4, we present
final remarks and conclusions.
2. Theory

To discuss annular focusing of a beam we refer to the setup
depicted in Fig. 1. In this setup, the input beam (B) is passed
through a phase plate (PP), and the RV is generated, by free pro-
pagation of the transmitted beam, at a distance z from the plate.

For our analysis, the optical fields are expressed in polar co-
ordinates (ξ,ϕ) at the plate plane and (r,θ) at the focal field plane.
The complex amplitude of a generic RV, with integer topological
charge q, is

h r F r iq, exp , 1θ θ( ) = ( ) ( ) ( )

whose radial factor F(r) is specified below. Considering that the RV,
with the separable form in Eq. (1), is obtained by free propagation
of the field transmitted by the plate, it is easy to prove that this
field must have the separable form

f a exp i exp iq, , 2ξ ϕ ξ β ξ ϕ( ) = ( ) [ ( )] ( ) ( )

where the amplitude a(ξ) is a non-negative function and β(ξ) is a
radial phase function to be determined. This result is obtained
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Fig. 1. Simple setup to generate the annular focusing of a beam.

Fig. 2. Central sections in phase modulations of phase plates that generate optimal
RVs of topological charges (a) q¼0, and (b) q¼1, employing an input Gaussian
beam.
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using either the exact or the paraxial scalar field propagation.
Now we assume that the complex amplitude of the beam that

illuminates the phase plate is g(ξ,ϕ)¼│g(ξ,ϕ)│exp[iα(ξ,ϕ)], with
amplitude │g(ξ,ϕ)│ and phase α(ξ,ϕ). Thus, denoting the phase
plate transmittance as p(ξ,ϕ), we establish the identity f(ξ,ϕ)¼g(ξ,
ϕ) p(ξ,ϕ). Expressing this relation considering Eq. (2) and the
previous formula for g(ξ,ϕ) it is easy to show that the complex
amplitude of the required input beam is

g a i, exp , , 3ξ ϕ ξ α ξ ϕ( ) = ( ) [ ( )] ( )

and the transmittance of the phase plate is given by

p i i iq, exp exp , exp . 4ξ ϕ β ξ α ξ ϕ ϕ( ) = [ ( )] [ − ( )] ( ) ( )

According to Eq. (3), the family of beams that can be trans-
formed, using the setup of Fig. 1, into the ring vortex with the
separable form of Eq. (1), must have an amplitude dependent only
in the radial coordinate ξ. However, the phase α(ξ,ϕ) in such
beams can be an arbitrary function.

The unknown phase β(ξ) in Eq. (4) is next specified in order to
give desired attributes to the radial factor, F(r), of the RV field.
Performing the Fresnel propagation of the field f(ξ,ϕ) [Eq. (2)] to a
distance z one obtains the field h(r,θ) [Eq. (1)], whose radial factor
is (omitting constants)
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where k¼2π/λ is the wave number and Jq denotes the q-th order
Bessel function of the first kind. The integral in Eq. (5) corresponds
to the q-th order Hankel transform of the radial function a(ξ)
exp{i[β(ξ)þkξ2/2z]}.

Now, let us assume that we desire a RV with radius r0. We
determine the radial phase β(ξ) for which this focal field is opti-
mum. From Eq. (5) we can establish the RV intensity at r¼r0 as
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where fpos(ξ)¼ξ a(ξ)│Jq(2πr0ξ/λz)│ is a non-negative real function,
and ‘sgn{x}' is a binary function, equal to þ1 for xZ0, and �1
otherwise. Since the integrand in Eq. (6) is formed by the non-
negative function fpos(ξ)multiplied by phase factors, we can obtain
the relation [18]
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where the squared integral represents the upper bound value for
│F(r0)│2. It is straightforward to establish from Eq. (6) that the
intensity │F(r0)│2 achieves the upper bound value if
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Considering this result in Eq. (4) one obtains the plate phase
modulation that generates the optimal RV of radius r0, which is
given by
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The phase plate with the transmittance in Eq. (9), illuminated
by the input beam g(ξ,ϕ) [Eq. (3)], transmits the field f(ξ,ϕ)¼a(ξ)
exp(� ikξ2/2z) sgn{Jq(2πr0ξ/λz)} exp(iqϕ). Because of the quadratic
phase factor in f(ξ,ϕ), the complex amplitude of the RV, at the
distance z from the plate, is equivalent to the Fourier transform of
the function a(ξ) sgn{Jq(2πr0ξ/λz)} exp(iqϕ).

An important input field that belongs to the class defined in Eq.
(3) is the GB, whose complex amplitude can be expressed, omit-
ting factors that are independent of ξ, as

g w ik R, exp / exp /2 , 102 2 2ξ ϕ ξ ξ( ) = ( − ) ( ) ( )

where w is the beam radius and R is the curvature radius of the
quadratic phase, at the plate plane. In order to apply the general
results to the case of the input GB, it is required to replace the
amplitude and the phase in Eq. (3) by exp(�ξ2/w2), and kξ2/2 R,
respectively. Thus, the plate transmittance that transforms the
input GB in an optimal RV, with topological charge q, is
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Note that the quadratic phase factor in Eq. (11), corresponds to
the transmittance of a conventional lens, which generates the
Fourier transform of the other two factors. On the other hand, the
annular form of the focal field, with maximum peak intensity, is
allowed by the radial binary phase modulation sgn{Jq(2πr0ξ/λz)}.
This last factor, together with the azimuthal phase, in both Eq. (9)
and Eq. (11), correspond to the phase modulation of the q-th order
Bessel beam of radial spatial frequency ρ0¼r0/λz. Two illustrative
examples of the phase modulation in Eq. (11), with topological
charges q¼0 and q¼1, respectively, are depicted in Fig. 2.

Our discussion and results are connected with previous works
dealing with the so called perfect vortex [13–16], which is an infinitely
narrow RVwith arbitrary integer topological charge. It is clear that this
ideal field cannot be generated in practice. However, the optimal
physically realizable approximation to such ideal RV, employing the
optical setup in Fig. 1, is generated by the phase plate whose trans-
mittance is given by Eq. (9), for a generic beam with the complex
amplitude specified in Eq. (3), or by Eq. (11), for an input GB. Such
phase transmittances can be, in principle, fabricated by lithography on
a glass substrate. An attractive option, discussed below, is the use of a
phase liquid-crystal (LC) spatial light modulator (SLM).
3. Computational and experimental assessment of optimal RV
generators

Next we develop numerical simulations to evaluate optimal



Fig. 3. Transverse intensity profiles of optimal RVs of topological charge q¼0,
generated with input Gaussian beams of width w¼Qλz/r0, with parameter Q equal
to (a) 2.5, (b) 5, (c) 7.5, and (d) 10.

Fig. 5. Optical setup to generate the optimal annular focusing of a GB using a phase
SLM.
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RVs generated by an input GB. We assume that the GB radius w is
related with the RV radius r0, by the relation w¼Qλz/r0, for dif-
ferent values of Q. In addition, for simplicity we assume an infinite
curvature radius R in the quadratic phase of the GB. The normal-
ized transverse intensity profiles of the generated RVs, for Q¼2.5,
5, 7.5, and 10 and the topological charge q¼0, are depicted in
Fig. 3. We note that the width of the RV bright section, relative to
the radius r0, varies inversely with the value of the parameter Q.
This result is understood noting that the radius w of the input GB
is proportional to Q and considering that the transverse section of
the RV is related to the Fourier transform of the GB profile.

The RV intensity profiles in Fig. 3 were computed for q¼0.
However, by means of additional simulations we obtain that the
peak intensities and widths of optimal RVs (generated by GBs)
show very low variation when Q is fixed and the topological
charge q takes different values. We computed the peak intensity
and the full width at half of the maximum intensity (FWHM) in
RVs obtained for different values of Q and q. In Fig. 4 we display
the peak intensities (a, b) and FWHM's (c, d) for Q¼5 (a, c) and
Q¼10 (b, d). The peak intensities for different q's and a fixed Q are
normalized respect to the peak intensity for q¼0, and the FWHM's
are normalized with respect to r0.
Fig. 4. Normalized peak intensities (top) and FWHMs (bottom) of optimal RVs for
several topological charges q, generated by a GB with parameter Q equal to 5 (a,c)
and 10 (b,d).
In general we have found that for a fixed Q, the peak intensities
(and corresponding FWHM's) of optimal RVs, present a relatively
low variance for topological charges q in the range [0, 2Q]. The q-
values for each plot in Fig. 4 correspond to this range.

For the generation of an optimal RV, with the described ap-
proach, we employ the experimental setup depicted in Fig. 5. In
this setup, the light beam from a He–Ne laser source (LS) is
cleaned and expanded by a spatial filter (SF), and collimated by a
lens (L). It generates a GB that illuminates a reflecting phase SLM
(Model PLUTO, Holoeye Photonics LG). In the SLM we im-
plemented the phase for optimal annular focusing of the GB [Eq.
(11)] with an additional linear phase modulation, whose purpose
is to separate the focal field from the un-modulated fraction of the
light reflected by the SLM. The intensity of RVs is recorded by a
CCD camera.

In the experiment we employed a GB, obtained from a He–Ne
laser (λ¼632.8 nm). The measured beam parameters at the SLM
plane were w≅992 μm and R≅8.8 m. For these parameters, we
designed and tested phase plates, with the transmittance given in
Eq. (11), considering the focal distance z¼50 cm, and two different
values of the RV radius r0, which are computed from the relation
r0¼Qλz/w, for Q¼2.5 and Q¼5. The values for r0 are 797 μm (for
Q¼2.5) and 1594 μm (for Q¼5). The linear phase modulation in-
troduced in the SLM transmittance is given by exp[i2πu0(xþy)],
with spatial frequency u0 equal to 1/6 of the SLM bandwidth (the
inverse of the SLM pixel resolution). In Fig. 6 we display a typical
image of a generated RV, together with the 0-th order light spot.
This spot basically results from the unmodulated reflection of the
Gaussian beam that illuminates the SLM. In Fig. 7(a, b) we show
the intensities of the RVs recorded by the CCD that are obtained
for the case q¼0. In Fig. 8 we display the transverse intensity
profiles of the generated RVs vs the normalized radial coordinate
r/r0. The experimental ring intensity images were registered using
the full CCD dynamic range (with 256 Gy levels). Thus, the back-
ground noise, which presents gray levels from 15 to 20, is not
easily noted at Fig. 7. On the other hand, in the transverse profiles
of Fig. 8, we have subtracted the minimum background intensity
level, which corresponds to the gray level 15. The results obtained
when we change the topological charge q (in the range [0, 2Q]) are
quite similar to the ones for q¼0. The experimental RV transverse
profiles in Fig. 8 are highly coincident with the RV profiles in Fig. 3
(a, b), which were numerically computed for the parameters
Q¼2.5 and Q¼5. In order to obtain high symmetry RVs it was
Fig. 6. Image of a typical generated RV, together with the 0-th order light spot.



Fig. 7. Experimentally recorded intensities of optimal RVs with topological charge
q¼0 and parameter Q equal to (a) 2.5 and (b) 5.

Fig. 8. Transverse intensity profiles of the experimentally generated RVs depicted
in Fig. 6.
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required the precise centering of this beam in the phase pattern
displayed at the SLM. We achieve it using a conventional micro-
metric positioning system to control the transverse position of the
SLM.
4. Final remarks and conclusions

The presence of the binary phase modulation sgn{Jq(2πr0ξ/λz)}
in the plate transmittance specified in Eq. (9) is responsible of the
optimum peak intensity in the discussed RVs. Such attribute of RVs
can be useful in optical trapping and other applications. However,
it is possible, and sometimes convenient, the use of other phase
plates for generation of RVs. Such phase plates are specified by
replacing the factor sgn{Jq(2πr0ξ/λz)}, in Eqs. (8) and (9), by a
different radial phase modulation, which is denoted by exp[iχ(ξ)].
In this case Eq. (9) adopts the modified form
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An example of alternate radial phase is χ(ξ)¼2πr0ξ/λz. In this
case, the last two factors in the plate transmittance, Eq. (12),
corresponds to the helical axicon (HA) [16]. This phase plate
generates RVs with smaller peak intensities and wider bright an-
nuli in comparison to optimal RVs. For the topological charge q¼0,
the HA becomes an axicon. The annular field obtained, at the
Fourier domain of this optical element (illuminated e.g. by a
Gaussian beam), can be projected to a phase SLM, where an ar-
bitrary topological charge can be added. This procedure allows the
generation of RVs of arbitrary topological charge, with an invariant
annular intensity distribution [14].

The simplest specification of the radial phase function is χ(ξ)¼
0. In this case, the parameter r0 disappears from the plate trans-
mittance definition and the RV radius can be only moderately
controlled by means of the topological charge q. Nevertheless, the
features of the RVs obtained in this case (for qZ1) are useful in
special applications, e. g. vortex coronography [11,12] and super-
resolution fluorescence microscopy [7].
One of the remarkable beams that belong to the class specified
in Eq. (3) is the GB. In this communication, the RVs generated by
this beam using our setup have been analyzed in detail. Another
interesting example of beam that also belongs to the mentioned
class is the flat-top field with circular support. The study of the RVs
generated by this field has not been performed in the present
work.

Summarizing, we have established the transmittance of a phase
plate that allows the optimal focusing of a beam into an RV. We
have assumed that the optimal RV is the one with the maximum
possible intensity. It is not difficult to understand that other de-
sirable features of the optimal RV, as narrow annulus and high
intensity gradient, are natural consequences of maximizing the
peak intensity.

As a first step we established the class of beams that can be
focused into an RV. As result we obtained that the phase mod-
ulation of such beams is arbitrary but their amplitude must be
only dependent on the radial coordinate.

The phase modulation of the high order Bessel beams, that
appear as main factor in the transmittance of the designed phase
plates, has been previously employed in the efficient although
approximate generation of Bessel‐Gauss beams [19–21]. The an-
nular focal field generated by the established phase plate corres-
ponds to the optimal physically realizable implementation of the
RV, in the context of the employed setup. This result is an im-
portant complement of the well-known case of optimal beam fo-
cusing into a single spot.

We illustrated by means of numerical simulations and experi-
mentally the generation of optimal RVs by a GB. An interesting
result is that the peak intensities and widths of the RVs generated
with the proposed method, show very low variation if the width of
the GB is fixed and the topological charge is modified in a range of
values. The radius and relative transverse width of the optimal RVs
are controlled by the parameters of the phase plate transmittance
and the width of the input GB. Specifically, the RV radius r0 ap-
pears explicitly in the analytical expression for the plate trans-
mittance. Such attributes of optimal RVs facilitate its im-
plementation and application in conditions where the features of
the RVs need to be controlled.
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