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Abstract
We study the mirror-field interaction in several frameworks: when it is driven, when it is affected
by an environment, and when a two-level atom is introduced in the cavity. By using operator
techniques, we show either how these problems may be solved or how the Hamiltonians
involved, via sets of unitary transformations, may be taken to known Hamiltonians for which
there exist approximate solutions.

Keywords: mirror-field interactions, superoperators, non-classical states

1. Introduction

Light carries momentum and, therefore, it can exert pressure
over matter [1, 2], be it from incoherent [3–5] or coherent [6–
8] sources. Such radiation pressure allows, for example, the
coupling of mechanical degrees of freedom to electro-
magnetic cavity modes in cavities with a moving mirror, both
in the classical [9–11] and quantum regimes [12–16]. The so-
called standard optomechanical model in quantum optics is
modeled after a classical Fabry–Pérot resonator where one
mirror is free to move in a pendulum-like motion [12]. In the
beginning, the interest in this optomechanical system was
focused on the detection of gravitational waves. When the
effects of radiation pressure on the device were shown to be a
detection issue [14], it became important to beat the standard
quantum limit [17, 18]. An interesting solution to this pro-
blem is to prepare the mechanical oscillator in a non-Gaussian
state [18–20]; thus quantum state engineering of the
mechanical mode became important. Furthermore, it is of
great interest to test quantum theory with macroscopic
degrees of freedom [21–23], and quantum optomechanical
systems provide an experimentally feasible testing ground
and may even be a viable quantum information plat-
form [24, 25].

The canonical quantization of a Fabry–Pérot cavity with
a pendulum-like mirror delivers an ideal Hamiltonian in the

form [14, 16, 26, 27],

ω ω= + − +( )H a a b b ga a b bˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ , (1)c m
† † † †

where the cavity field and mechanical oscillator modes are
described by their effective frequencies, ωc and ωm, and

creation (annihilation) operators, â† (â) and b̂
†
(b̂), in that

order. Dispersive linear coupling between the modes occurs,
and it is quantified by the coupling constant g. Here, we will
revisit this and aggregated models through an operator
approach. In the following section, we will show the well-
known equivalence between the standard optomechanical
model and a Kerr medium. We will also show that the driven
optomechanical model is similar to a trapped ion, and that is
the reason behind the use of sideband cooling and other ion-
trap cavity electrodynamics (QED) techniques to prepare
mechanical states. We will couple the mechanical mode to an
environment and introduce superoperator techniques to make
the problem tractable. We will introduce a new result,
showing that the open system reduces to a damped mechan-
ical oscillator in the case of a thermal electromagnetic field
mode in the cavity. Finally, we will add a two-level system,
interacting with the cavity field under Jaynes–Cummings
dynamics, to the model. We will show that a right unitary
approach allows us to understand how the electromagnetic
field mode mediates coupling between the atom and the
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mechanical oscillator, but a closed-form time evolution
operator requires developing an adequate rotating wave
approximation (RWA) compatible with the right unitary
transformations.

2. Standard optomechanical model

The first experimental realization of a classical optomecha-
nical cavity consisted of a Fabry–Perot cavity with a fixed
mirror and a pendulum-like moving mirror [10]. In this
experiment and other proposals [27], optical bistability and
mirror confinement due to changes in the physical length of
the cavity induced by radiation pressure were shown. This
bistable phonemenon was similar to that found in fixed cav-
ities filled with nonlinear media [28]. Soon, it was shown that
the equations of motion of the quantum optomechanical
system showed optical bistability due to its equivalence to a
Kerr medium [29, 30]. Since then, the topic has been revisited
through different approaches [31, 32].

2.1. Driven system

Here we are interested in an algebraic approach. For this
reason we will start with the standard Hamiltonian for a
pumped optomechanical system,

ω ω

Ω ω

= + − +

+ +

( )
( )( )

H a a b b ga a b b

t a a

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

cos ˆ ˆ , (2)

p c m

p

† † † †

†

where the laser pump frequency is given by ωp and its
strength by Ω. First, we need to get rid of the time depen-
dence, so we move to a frame defined by the cavity field
photon number rotating at the pump frequency,

ψ ϕ〉 = 〉U t| ˆ ( )| ,R with = ω−U tˆ ( ) eR
a ati ˆ ˆp

†
, such that we can

write the Schrödinger equation as,

⎡⎣ ⎤⎦ϕ ϕ∂ =i U t H U tˆ ( ) ˆ ˆ ( ) . (3)t R p R

Thus the effective Hamiltonian in the new frame,

⎡⎣ ⎤⎦ϕ ω ϕ∂ = −i U t H a a U tˆ ( ) ˆ ˆ ˆ ˆ ( ) , (4)t R p p R
† †

is given by the following,

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

ω

δ ω

Ω

= −

= + − +

+ + + +ω ω−

( )
( ) ( )

H U t H a a U t

a a b b ga a b b

a a

ˆ ˆ ( ) ˆ ˆ ˆ ˆ ( ),

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

2
ˆ 1 e ˆ 1 e . (5)

R R p p R

p m

t t

† †

† † † †

† 2i 2ip p

Finally, we can make an RWA to eliminate the terms rotating
at twice the pump frequency, ω± te 2i p , and obtain,

δ ω Ω= + − + + +( ) ( )H a a b b ga a b b a aˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
2

ˆ ˆ , (6)c p m
† † † † †

where the detuning between the pump and cavity field fre-
quencies is δ ω ω= − .p c p Now, we want to get rid of the
terms involving the cavity field intensity and the canonical

position of the mechanical oscillator. For this, let us define a
displacement on the mechanical oscillator basis,

ξ = ξ ξ−( ) ( )D̂ ˆ e , (7)b
b b

ˆ
ˆ ˆ ˆ ˆ† †

where the operator ξ̂ is either a cavity field operator or just a
complex number. If we change into a joint basis defined by
such a displacement, we arrive at a Hamiltonian closer to our
goal [33, 34],

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

ω ω

δ
ω

ω Ω
ω

ω

=

= − + +

+

( )

H D
g

a a H D
g

a a

a a
g

a a b b a D
g

aD
g

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,

ˆ ˆ ˆ ˆ ˆ ˆ
2

ˆ ˆ

ˆ ˆ . (8)

D b
m

c b
m

p
m

m b
m

b
m

ˆ
† † ˆ †

†
2

† 2 † † ˆ
†

ˆ

Note that moving into the joint-displaced basis defined by
the operator ωD ga aˆ ( ˆ ˆ )b mˆ † helps us to get rid of the linear
dispersive mechanical-cavity field modes interaction but

introduces a Kerr term for the cavity field, ( )a aˆ ˆ† 2
, and

switches the interaction to the driving terms that become

ωa D gˆ ˆ ( )b m
†

ˆ
†

and ωaD gˆ ˆ ( )b mˆ . In order to reach our goal, we
now move to the rotating frames defined by the intensity in
the cavity field rotating at the detuning frequency and the
number of excitations in the mechanical mode rotating with

frequency ωm,
⎡
⎣⎢

⎤
⎦⎥= δ ω− +( )U tˆ ( ) ecm

a a b b ti ˆ ˆ ˆ ˆ
p m

† †

. Thus, we reach
our goal,

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

δ ω

ω
Ω

ω

ω

= − −

= − +

+

δ ω

δ ω−

( )
( )

H U t H a a b b U t

g
a a a D

g

a D
g

ˆ ˆ ( ) ˆ ˆ ˆ ˆ ˆ ˆ ( )

ˆ ˆ
2

ˆ e ˆ e

ˆe ˆ e . (9)

cm cm D p m cm

m

t
b

m

t

t
b

m

t

† † †

2
† 2 † i ˆ

† i

i ˆ i

p m

p m

Note that in the absence of driving, Ω = 0, the standard
optomechanical Hamiltonian is equivalent to a Kerr
Hamiltonian [29–32], and it has been shown that measuring
the field quadratures of this system delivers information
about the Wigner characteristic function of the mechanical
oscillator [35]. Furthermore, from such a form it is
straightforward to discuss light squeezing [36], photon
blockade [37], and single photon dynamics [38], to mention
a few examples.

In the presence of driving, the second term in the effec-
tive Hamiltonian Ĥcm is quite interesting. Note how similar
these terms are to that of a driven trapped ion [39]; as a matter
of fact, if we substituted the cavity field operators with Pauli
matrices, we would recover the trapped ion Hamiltonian.
Thus, we can use an approach similar to that used in trapped-
ion QED and expand the mechanical mode operators into

2
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their power series,

∑α α α= −ω ω−

=

∞
−α ( )( ) ( )D

p q
b bˆ e e

1

! !
ˆ ˆ e , (10)b

t

p q

p q q p tˆ
† i

, 0

† i ( )m m
2

2

∑α α α= −ω ω−

=

∞
− −α ( )( ) ( )D

p q
b bˆ e e

1

! !
ˆ ˆ e .(11)b

t

p q

p q q p tˆ i

, 0

† i ( )m m
2

2

If the displacement parameter, α ω= g m, fulfills α ≪ 1, the
pump intensity is high, Ω ω≫ c, and we choose the pumping
detuning such that it is an integer multiple of the mirror fre-
quency, δ ω= ±sp m with = …s 0, 1, 2, . Then we can apply
an RWA to obtain, for δ ω= s m,

⎡

⎣

⎢⎢⎢
⎤

⎦

⎥⎥⎥

ω
Ω α α

α α

= − +
+

+ −
+

+
− α ( )

( )

( ) ( )
( )

( ) ( )( )

( )

H
g

a a a
b b

b b s
L b

a b
b b

b b s
L

ˆ ˆ ˆ
2

e ˆ

ˆ ˆ !

ˆ ˆ !

ˆ

ˆ ˆ
ˆ ˆ !

ˆ ˆ !
, (12)

m b b

s s

s

b b

s

2
† 2

†

† ˆ ˆ
( ) 2

† †

†

† ˆ ˆ
( ) 2

2

2 †

†

and for δ ω= −s m,

⎡

⎣

⎢⎢⎢
⎤

⎦

⎥⎥⎥

ω
Ω α

α α α

= − + −
+

× +
+

−
− α ( ) ( )

( )
( )

( )

( )

( ) ( )( )

H
g

a a a b
b b

b b s

L a
b b

b b s
L b

ˆ ˆ ˆ
2

e ˆ ˆ
ˆ ˆ !

ˆ ˆ !

ˆ

ˆ ˆ !

ˆ ˆ !

ˆ , (13)

m

s

b b

s

b b

s s

2
† 2 †

†

†

ˆ ˆ
( ) 2 †

†

† ˆ ˆ
( ) 2

2

2

† †

where the function L x( )n
m( ) is the nth Laguerre generalized

polynomial with parameter m. In other words, by choosing
the detuning between the cavity and pump fields, we can
produce a nonlinear coupling of the cavity field with the
mechanical oscillator in a form equivalent to that of a trapped-
ion. Thus, we can use the knowledge from ion-trap QED to
engineer quantum states in the closed or open standard
optomechanical system [40–46]; e.g., sideband cooling [47–
49], Schrödinger cats [33, 50], and non-Gaussian states of the
mechanical oscillator [20, 51–53].

2.2. Damping of the mechanical oscillator

Now we will turn our attention to the standard optomecha-
nical system and take into account the damping of the
mechanical oscillator, such that the system dynamics is
described by a master equation,

⎡⎣ ⎤⎦ ρ ρ γ ρ= − + [ ]d

dt
i Hˆ ˆ , ˆ ˆ ˆ , (14)b̂

where γ is the decay rate and ρ̂ is the density operator of the
system, and the Linblad superoperator is given by,

 ρ ζρζ ζ ζρ ρζ ζ= − −ζ [ ]ˆ ˆ 2 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ. (15)ˆ
† † †

It is straightforward to move into the frame defined by the
photon number rotating at the cavity field frequency,

= ω−U tˆ ( ) ec
a ati ˆ ˆf

†
; then, the master equation becomes

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ρ ρ γ ρ

ω

= − +

= + +( )
t

i H

H b b ga a b b

d

d
ˆ ˆ , ˆ ˆ ˆ ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ , (16)

c m c b c

m m

ˆ

† † †

and ρ ρ= U t U tˆ ˆ ( ) ˆ ˆ ( )c c c
†

. Now, we follow the standard proce-
dure mentioned above and introduce a displacement of the
mechanical degree of freedom as a function of the number of
photons in the cavity, β( )D a aˆ ˆ ˆb̂

† with β ∈ . Thus, we can
write the density operator as

ρ β ρ β= ( ) ( )D a a D a aˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ , (17)c b Dˆ † † †

and its corresponding master equation,

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

 

 

ρ ρ γ ρ ρ

β ρ β ρ

= − + +

+ + }
{

t
i H

d

d
ˆ ˆ , ˆ ˆ ˆ ˆ ˆ

ˆ ˆ * ˆ ˆ , (18)

D D D b D a a D

D D

ˆ ˆ ˆ

†

†

where the displaced Hamiltonian is

ϵ ω μ μ= + + +( )( )H a a b b a a b bˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ * ˆ (19)D m
† 2 † † †

with parameters,

μ ωβ= +g , (20)

ϵ β ω β= +g2 Re ( ) , (21)2

and the new superoperator is defined in the following,

 ρ ρ ρ ρ= − −( )[ ] a a b b a a b a aˆ ˆ 2 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ . (22)† † † † † †

At this point, we can start analyzing which initial con-
ditions of the field provide us with a master equation amen-
able for analytic solution. The simplest case is given by a
thermal field in the cavity with an average of n̄ photons,

∑ρ =
+=

∞

+( )
n

n

n
k kˆ ( ¯)

¯

1 ¯
, (23)th

k

k

k
0

1

leading to the following initial state of the whole system,

ρ ρ ρ= ⊗nˆ (0) ˆ ( ¯) ˆ (0). (24)D th m

Then, we can set the value of the displacement parameter,

β
ω γ

= −
−
g

i
, (25)

m

to get the following master equation for this particular case of
initial density operator,

⎡
⎣⎢

⎤
⎦⎥ ⎡⎣ ⎤⎦ρ ω ρ γ ρ= − +

t
i b b

d

d
ˆ ˆ ˆ, ˆ ˆ . (26)D m D b D

†
ˆ

In other words, a mechanical oscillator interacting with a
thermal field cavity mode and coupled to an environment
behaves just as a free mechanical harmonic oscillator coupled
to an environment. Its time evolution can be given by

3
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standard superoperator techniques [54–57],

⎡
⎣⎢

⎤
⎦⎥ρ ρ= ω ω−γ

γ
− −

tˆ ( ) e e e ˆ (0)e , (27)D
Lt Jt b bt

D
b btˆ ˆ i ˆ ˆ i ˆ ˆ

m m
1 e 2

2
† †

with the auxiliary superoperators,

ρ γ ρ ρ γ ρ ρ= = − +( )J b b L b b b bˆ ˆ 2 ˆ ˆ ˆ , ˆ ˆ ˆ ˆ . (28)
† † †

3. Hybrid qubit-optomechanical model

Recently, it has been proposed to couple a two-level atom to
the standard optomechanical model [58–60]; such a hybrid
model is described by the Hamiltonian,

ω ω

ω
σ λ σ σ

= + − +

+ + +− +

( )
( )

H a a b b ga a b b

a a

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

2
ˆ ˆ ˆ ˆ ˆ , (29)

h c m

z

† † † †

0 †

where the two-level system is described by Pauli matrices, σ̂ j

with = ±j z, , and the transition frequency ω0, and the atom-
field coupling is given by the parameter λ. Here, we will first
move into the frame defined by the photon number and the
qubit energy rotating at the cavity field frequency,

= ω σ− +( )Û er
a a ti ˆ ˆ ˆ 2c z

†
, such that the effective Hamiltonian is,

δ σ ω λ σ σ= + + +

− +

− +

( )
( )H b b a a

ga a b b

ˆ
2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ , (30)

r z m
† †

† †

where the detuning between the qubit and cavity field fre-
quency is given by δ ω ω= − c0 . We can follow a right
unitary approach [61–63] and rewrite this Hamiltonian in the
form,

=H TH Tˆ ˆ ˆ ˆ , (31)r T
†

where the auxiliary Hamiltonian is given by the expression,

δ σ ω λ σ= + +

− + + +( ) ( )
H b b a a

ga a b b g b b e e

ˆ
2

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ , (32)

T z m x
† †

† † †

where we have diagonalized the cavity field part by using the
operators,

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟= =T V T Vˆ ˆ 0

0 1
, ˆ ˆ 0

0 1
. (33)

† †

They are right unitary due to the properties of the Susskind–
Glogower operators,

=
+

=
+

V
a a

a V a
a a

ˆ 1

ˆ ˆ 1
ˆ, ˆ ˆ

1

ˆ ˆ 1
, (34)

†

† †

†

that fulfill =VVˆ ˆ 1,†
but = − 〉〈V Vˆ ˆ 1 |0 0|†

. Note that we can

rearrange the following terms in the auxiliary Hamiltonian,

⎜ ⎟⎛
⎝

⎞
⎠σ

+ − +

= + − − +

( ) ( )
( ) ( )

g b b e e ga a b b

g b b g a a b b

ˆ ˆ ˆ ˆ ˆ ˆ

1

2
ˆ ˆ ˆ ˆ ˆ

1

2
ˆ ˆ , (35)z

† † †

† † †

and use again the displacement operator in terms of the
number of photons in the field to obtain,

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎛
⎝

⎞
⎠

ω ω

δ
ω

σ ω

λ σ
ω

= − −

= + + + − +

+ − −

( )

H D
g

a a H D
g

a a

g
b b

g
a a b b

a a
g

a a

ˆ ˆ ˆ ˆ
1

2
ˆ ˆ ˆ ˆ

1

2
,

2 2
ˆ ˆ ˆ ˆ

1

2
ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ
1

2
. (36)

d
m

T
m

m
z m

x
m

† † †

†
2

† †

†
2

†
2

Now, just for the sake of clarity, we can introduce a rotation
around σ̂y,

θ = θσ−R̂ ( ) e , (37)y
i ˆy

and rewrite our initial hybrid optomechanical Hamiltonian as,

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

ω
π

π
ω

= −

× −

H TD
g

a a R

H R D
g

a a T

ˆ ˆ ˆ ˆ
1

2
ˆ

4

ˆ ˆ
4

ˆ ˆ ˆ
1

2
ˆ , (38)

r b
m

y

a y b
m

ˆ † †

ˆ
† † †

with the final auxiliary Hamiltonian given by,

= +H H Hˆ ˆ ˆ . (39)a K am

Note that the effective Kerr medium,

⎜ ⎟⎛
⎝

⎞
⎠ω

= − −H
g

a aˆ ˆ ˆ
1

2
, (40)K

m

2
†

2

commutes with the rest of the terms,

ω ω σ Ω σ σ= + + + +( )( ) ( )H b b a a a a
g

b bˆ ˆ ˆ ˜ ˆ ˆ ˆ ˜ ˆ ˆ ˆ
2

ˆ ˆ ˆ , (41)am m z x x
† † † †

which can be reinterpreted as a driven two-level atom inter-
acting with the mechanical oscillator under the Jaynes–
Cummings model [64] without the RWA. The two-level
transition frequency and driving strength depend on the
intensity of the optical mode,

ω λ= −( )a a a a˜ ˆ ˆ ˆ ˆ , (42)† †

⎜ ⎟⎛
⎝

⎞
⎠Ω δ

ω
= + −( )a a

g
a a˜ ˆ ˆ

2 2
ˆ ˆ

1

2
. (43)
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†
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At this point we could note that,
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and write the evolution operator of the total system as,
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b
m

y
H t

y

b
m

ˆ † i ˆ †

ˆ
† † †

a

where we can use the fact that the Kerr term commutes,

=− − −e e e , (46)H t H t H ti ˆ i ˆ i ˆa K am

but in the end, it is not possible to provide a closed form

propagator from the term −e H ti ˆam . Working a formal rotating
wave approximation in this scenario is beyond our current
purpose.

4. Conclusion

We used a purely algebraic approach to revisit the standard
quantum optomechanical model describing the linear dis-
persive interaction between two bosonic modes, electro-
magnetic and mechanical. We showed that a displacement on
the mechanical basis proportional to the number state in the
electromagnetic basis, sometimes called a polaron transfor-
mation, delivers a model consisting of an effective electro-
magnetic Kerr medium plus a coupling between the
electromagnetic and mechanical modes similar to that found
in a trapped ion. We took advantage of ion-trap QED and
showed that it is possible to implement a series of optical–
mechanical couplings that allow trapping, cooling, and
parametric coupling phenomena by choosing detunings
between the electromagnetic mode and the classical pump
that are integer multiples of the mechanical frequency.

We also used superoperator techniques to revisit the
standard optomechanical system when the mechanical oscil-
lator is coupled to the environment. Here we worked out a
general expression and gave a closed-form time evolution
superoperator for the particular case of a thermal electro-
magnetic field.

Finally, we presented a right unitary approach to a system
formed by the addition of a two-level atom interacting with
the electromagnetic mode. This approach makes it simple to
realize that the electromagnetic mode enables the coupling

between the two-level system with the mechanical mode in a
Jaynes–Cummings without the RWA form but also shows us
that it is not possible to provide a closed-form time evolution
operator unless an adequate approximation scheme is
developed.
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