
Appl. Math. Inf. Sci. ?, No. ?, 1-7 (2014) 1

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/Operator*methods*applied*to*special*functions

Operator methods applied to special functions
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1 Introduction

Based on some techniques that are common to quantum
mechanics, we give some examples on how some series of
special functions may be added.
For this, we use some theorems and lemmas that are not
usually known when one studies special functions, such as
the Baker-Hausdorff formula and the Hadamard lemma.
We developed further preliminary results presented in [1].

2 Hermite polynomials

The generating function for the Hermite polynomials is [2,
3,4]

e−α2+2αx =
∞

∑
n=0

Hn(x)
αn

n!
. (1)

The Hermite polynomials may be obtained from
Rodrigues’ formula [2,3,5,6] as

Hn(x) = (−1)nex2 dn

dxn e−x2
. (2)

From the recurrence relations [2]

Hn+1(x) = 2xHn(x)−2nHn−1(x), (3)

and from
dHn(x)

dx
= 2nHn−1(x), (4)

we can generate all the Hermite polynomials.
From the above recurrence relations, we can also prove

that, if we define the functions

ψn(x) =
π−1/4
√

2nn!
e−x2/2Hn(x), n = 0,1,2, ..., (5)

then

Â†ψn(x)≡
1√
2

(
x− d

dx

)
ψn(x) =

√
n+1ψn+1(x) (6)

and

Âψn(x)≡
1√
2

(
x+

d
dx

)
ψn(x) =

√
nψn−1(x). (7)

The functions (5) constitute a complete orthonormal set
for the space of square integrable functions, then we can
expand any function in that space as

f (x) =
∞

∑
n=0

cnψn(x), (8)

where
cn =

∫ ∞

−∞
dx f (x)ψn(x). (9)

Hermite polynomials are also solutions of the second order
ordinary differential equation [2,3,4]

y′′−2xy′+2ny = 0. (10)

Let us define the differential operator p̂ as

p̂ =−i
d
dx

, (11)
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then we have that

dn

dxn =

(
− p̂

i

)n

, (12)

and we can rewrite (2) in the form

Hn(x) = (−i)nex2
p̂ne−x2

= (−i)n
(

ex2
p̂e−x2

)n
. (13)

The operator inside the parenthesis above has the form

eξ ÂB̂e−ξ Â, (14)

for which we will use the following lemma [7,8,9]:
Hadamard lemma. Given two linear operators Â and B̂
then

eξ ÂB̂e−ξ Â = B̂+ξ
[
Â, B̂

]
+

ξ 2

2!
[
Â,
[
Â, B̂

]]
(15)

+
ξ 3

3!
[
Â,
[
Â,
[
Â, B̂

]]]
+ · · · ,

where [Â, B̂] ≡ ÂB̂− B̂Â is the commutator of operators Â
and B̂.
This allows us to obtain an expression for the formula (13)
developed above. We identify ξ = 1, Â = x2 and B̂ = p̂ in
equation (15), so that

ex2
p̂e−x2

= p̂+1
[
x2, p̂

]
+

1
2!

[
x2,

[
x2, p̂

]]
(16)

+
1
3!

[
x2,

[
x2,

[
x2, p̂

]]]
+ · · ·

To calculate the first commutator
[
x2, p̂

]
, we use the

general property [ÂB̂,Ĉ] = Â[B̂,Ĉ] + [Â,Ĉ]B̂ of
commutators, and that [x, p̂] = i, to get the commutation
relation

[
x2, p̂

]
= 2ix. It is obvious that all the other

commutators in (16) are zero, and we finally get

Hn(x) = (−i)n (p̂+2ix)n 1. (17)

This last expression can be used to obtain the generating
function. We have,

∞

∑
n=0

Hn(x)
αn

n!
=

∞

∑
n=0

αn

n!
(−i)n (p̂+2ix)n 1 = e−iα(p̂+2ix)1.

(18)
We obtained the exponential of the sum of two quantities
that do not commute. The above exponential can be
factorized in the product of exponentials via the
Baker-Hausdorff formula:

2.1 Baker-Hausdorff formula

Baker-Hausdorff formula [7,10,9]. Given two operators
Â and B̂ that obey[[

Â, B̂
]
, Â
]
=
[[

Â, B̂
]
, B̂
]
= 0, (19)

then
eÂ+B̂ = e−

1
2 [Â,B̂]eÂeB̂. (20)

We apply this formula to expression (18) identifying Â =
2αx, B̂ = −iα p̂, and we get

[
Â, B̂

]
= −2iα2 [x, p̂] = 2α2,

such that
∞

∑
n=0

Hn(x)
αn

n!
= e−α2

e2αxe−iα p̂1. (21)

Using now the obvious fact that e−iα p̂1 = 1, we finally
obtain

∞

∑
n=0

Hn(x)
αn

n!
= e−α2+2αx, (22)

that is the generating function for Hermite polynomials
[11].

2.2 Series of even Hermite polynomials

In order to show the power of the operator methods, we
calculate now the value of the following even Hermite
polynomials series,

F(t) =
∞

∑
n=0

tn

n!
H2n (x) . (23)

From (17), we get

H2n (x) = (−1)n (p̂+2ix)2n 1. (24)

Therefore,

F(t) =
∞

∑
n=0

tn

n!
H2n (x) =

∞

∑
n=0

tn

n!
(−1)n (p̂+2ix)2n 1 (25)

=
∞

∑
n=0

tn

n!
(−1)n

[
(p̂+2ix)2

]n
1

= exp
[
−t (p̂+2ix)2

]
1.

Developing the power in the exponential above we get

F (t) =
∞

∑
n=0

tn

n!
H2n (x)

= exp
{
−t

[
p̂2 −4x2 +2i(xp̂+ p̂x)

]}
1. (26)

The operators in the exponential in this last expression do
not satisfy the conditions of the Baker-Hausdorff formula,
so we need another method to understand the action of the
full operator that appears in the right side of expression
(26). What we do is to propose the ansatz,

F (t) = exp
[

f (t)x2]exp [g(t)(xp̂+ p̂x)]exp
[
h(t) p̂2]1,

(27)
where f (t),g(t) and h(t) are functions to be determined.
The exponential that contains the term g(t) is the
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so-called squeeze operator [12]. Deriving this expression
with respect to t, and dropping the explicit dependence of
F(t), f (t), g(t) and h(t) on t,

dF
dt

=
d f
dt

x2F

+
dg
dt

exp
(

f x2)(xp̂+ p̂x)exp [g(xp̂+ p̂x)]exp
(
hp2)1

+
dh
dt

exp
(

f x2)exp [g(xp̂+ p̂x)] p̂2 exp
(
hp2)1. (28)

Introducing an ”smart” 1 in the second and third term, we
get

dF
dt

=
d f
dt

x2F +
dg
dt

e f x2
(xp̂+ p̂x)e− f x2

F

+
dh
dt

e f x2
exp [g(xp̂+ p̂x)] p̂2 exp [−g(xp̂+ p̂x)]e− f x2

F.

(29)

We work then with the operator in the second term; we use
the Hadamard lemma (15) to obtain

e f x2
(xp̂+ p̂x)e− f x2

= xp̂+ p̂x+ f
[
x2,xp̂+ p̂x

]
+

f 2

2!
[
x2,

[
x2,xp̂+ p̂x

]]
+

f 3

3!
[
x2,

[
x2,

[
x2,xp̂+ p̂x

]]]
+ · · · .

(30)

The first commutator that appears in the above expression
is easily calculated, [x2,xp̂ + p̂x] = 4ix2, and so all the
others commutators are zero. Substituting back in (30),
we get

exp
(

f x2)(xp̂+ p̂x)exp
(
− f x2)= xp̂+ p̂x+4i f x2. (31)

We analyze now the third operator in expression (29). We
study first only a part of it,
exp [g(xp̂+ p̂x)] p̂2 exp [−g(xp̂+ p̂x)]. Using again (15),

exp [g(xp̂+ p̂x)] p̂2 exp [−g(xp̂+ p̂x)] =

= p̂2 +g
[
xp̂+ p̂x, p̂2]+ g2

2!
[
xp̂+ p̂x,

[
xp̂+ p̂x, p̂2]]

+
g3

3!
[
xp̂+ p̂x,

[
xp̂+ p̂x,

[
xp̂+ p̂x, p̂2]]]+ · · · . (32)

Calculating the first commutators,[
xp̂+ p̂x, p̂2]= 4ip2, (33)

[
xp̂+ p̂x,

[
xp̂+ p̂x, p̂2]]=−16p2, (34)

[
xp̂+ p̂x,

[
xp̂+ p̂x,

[
xp̂+ p̂x, p̂2]]]=−64ip2, (35)

it is clear that

exp [g(xp̂+ p̂x)] p̂2 exp [−g(xp̂+ p̂x)] =

= p̂2
∞

∑
j=0

(4i) j g j

j!
= p̂2 exp(4ig) . (36)

We proceed now to complete the study of the third operator
in expression (29). Until now we have

e− f x2
exp [g(xp̂+ p̂x)] p̂2 exp [−g(xp̂+ p̂x)]e− f x2

=

= exp(− f x2)p̂2 exp(4ig)exp(− f x2).

We use once more formula (15), to write

exp
(

f x2) p̂2 exp
(
− f x2)= p̂2 + f

[
x2, p̂2]

+
f 2

2!
[
x2,

[
x2, p̂2]]+ f 3

3!
[
x2,

[
x2,

[
x2, p̂2]]]+ · · ·

(37)

The first commutator gives
[
x2, p̂2

]
= −2 + 4ipx, the

second one gives
[
x2,

[
x2, p̂2

]]
= −8x2, and the third one[

x2,
[
x2,

[
x2, p̂2

]]]
= 0; such that all the other

commutators are zero, and

exp
(

f x2) p̂2 exp
(
− f x2)= p̂2 + f (−2+4ipx)

+
f 2

2!
(
−8x2)= p̂2 +2i f (xp̂+ p̂x)−4 f 2x2. (38)

Finally, we can write a reduced expression for the
derivative of the original series F(t) as

dF
dt

=

=
{[

d f
dt

+4i f
dg
dt

−4 f 2 exp(4ig)
dh
dt

]
x2+[

dg
dt

+2i f exp(4ig)
dh
dt

]
(xp̂+ p̂x)+ exp(4ig)

dh
dt

p̂2
}

F.

(39)

We get back to the original expression for the operator,
expression (27), and taken the derivative with respect to t,

dF (t)
dt

=−
[
p̂2 −4x2 +2i(xp̂+ p̂x)

]
× exp

{
−t

[
p̂2 −4x2 +2i(xp̂+ p̂x)

]}
1

=
[
−p̂2 +4x2 −2i(xp̂+ p̂x)

]
F. (40)

Comparing (39) and (40), we get the system of differential
equations

d f
dt

+4i f
dg
dt

−4 f 2 exp(4ig)
dh
dt

= 4,

dg
dt

+2i f exp(4ig)
dh
dt

=−2i, (41)

exp(4ig)
dh
dt

=−1.
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The initial conditions that we must set on these equations
are f (0) = g(0) = h(0) = 0, so for t = 0 the operator in
the right side of (26) is the identity. The solutions then are
simply

f =
4t

4t +1
, (42)

g =− i
2

ln(4t +1) , (43)

h =− t
4t +1

. (44)

We calculate now explicitly (27). As p̂ = −i d
dx , it is very

easy to see that exp
(
hp̂2

)
1 = 1 and then

F (t) = exp
(

f x2)exp [g(xp̂+ p̂x)]1. (45)

Using now that [x, p̂] = i, we write

exp [g(xp̂+ p̂x)]1 = exp [g(2xp̂− i)]1
= exp(−ig)exp(2gxp̂)1 (46)

and it is also clear that

exp(2gxp̂)1 =

[
1+gxp̂+

g2

2
(xp̂)2 + ...

]
1

= 1+gxp̂1+
g2

2
(xp̂)2 1+ ...= 1 (47)

and also that

exp [g(xp̂+ p̂x)]1 = exp(−ig) . (48)

We then have

F (t) = exp
(

f x2 − ig
)
. (49)

Substituting the functions f y g,

F (t) =
1√

4t +1
exp

(
4tx2

4t +1

)
, (50)

and finally, getting back to (26), we get the formula we
were looking for

∞

∑
n=0

tn

n!
H2n (x) =

1√
4t +1

exp
(

4tx2

4t +1

)
. (51)

2.3 Addition formula

We want to apply the form obtained in (17),
Hn(x) = (−i)n (p̂+2ix)n 1, to evaluate the quantity
Hn(x+ y). We write it as

Hn(x+ y) = (−i)n[−i
d

d(x+ y)
+2i(x+ y)]n, (52)

by using the chain rule we have d
d(x+y) =

1
2

(
∂
∂x +

∂
∂y

)
, so

that we may re-express (52) in the form

Hn(x+ y) =

=

(
−i√

2

)n

(−i
∂

∂
√

2x
+2i

√
2x− i

∂
∂
√

2y
+2i

√
2y)n.

(53)

By defining p̂X =−i ∂
∂X and p̂Y =−i ∂

∂Y with X =
√

2x and
Y =

√
2y, we obtain

Hn(x+ y) =

=
1

2n/2

n

∑
k=0

(
n
k

)
(−i)k(pX +2iX)k(−i)n−k(pY +2iY )n−k,

(54)

that by using H j(x) = (−i)n(p̂+2ix) j1 adds to

Hn(x+ y) =
1

2n/2

n

∑
k=0

(
n
k

)
Hk(

√
2x)Hn−k(

√
2y), (55)

which is the addition formula we were looking for.

3 Associated Laguerre polynomials

The generating function for the associated Laguerre
polynomials is [2,11,13]

∞

∑
n=0

Lα
n (x)t

n =
1

(1− t)α+1 exp
(

−xt
1− t

)
, |t|< 1. (56)

The associated Laguerre polynomials may be obtained
from the corresponding Rodrigues’ formula [2,11,13,3]

Lα
n (x) =

1
n!

x−α ex dn

dxn

(
e−xxn+α) . (57)

The associated Laguerre polynomials satisfy several
recurrence relations. One very useful, when extracting
properties of the wave functions of the hydrogen atom, is

(n+1)Lα
n+1(x) = (2n+α +1−x)Lα

n (x)−(n+α)Lα
n−1(x).

(58)
We will use the operator method outlined above for the
Hermite polynomials, to derive the usual explicit
expression for the associated Laguerre polynomials. We
rewrite expression (57) as

Lα
n (x) =

1
n!

x−α ex (ip̂)n e−xxn+α , (59)

where again the operator p̂ = −id/dx, defined in (11), is
used.
We notice that ex (ip̂)n e−x = [ex (ip̂)e−x]n and that, using
(15), ex p̂e−x = (p̂+ i), so

Lα
n (x) =

1
n!

x−α
(

d
dx

−1
)n

xn+α . (60)
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Using the binomial expansion and because
dm

dxm xn+α = (n+α)!
(n+α−m)! xn+α−m, we obtain the usual form for

associated Laguerre polynomials,

Lα
n (x) =

n

∑
k=0

(
n+α
n− k

)
(−1)k xk

k!
. (61)

4 Bessel functions of the first kind of integer
order

Bessel functions of the first kind of integer order, Jn(x), are
solutions of the Bessel differential equation [14,15,16]

x2y′′+ xy′+(x2 −n2)y = 0, (62)

where n is an integer. They may be obtained from the
generating function [2,14,15,16]

exp

[
x
2

(
t − 1

t

)]
=

∞

∑
n=−∞

tnJn(x), (63)

and also from the following recurrence relations [2,14,15,
16]

2n
x

Jn(x) = Jn−1(x)+ Jn+1(x). (64)

Bessel functions of the first kind of integer order may be
written as

Jn(x) =
∞

∑
m=0

(−1)mx2m+n

22m+nm!(m+n)!
, (65)

and also the following integral representation is very
useful [2]

Jn (x) =
1

2π

∫ π

−π
e−i(nτ−xsinτ)dτ. (66)

Some other important relations for the Bessel functions of
the first kind are the Jacobi-Anger expansions[2]:

eixcosy =
∞

∑
n=−∞

inJn(x)einy (67)

and

eixsiny =
∞

∑
n=−∞

Jn(x)einy. (68)

4.1 Addition formula

Using the operator methods developed in previous
sections, we will obtain here the addition formula for the
Bessel functions of the first kind of integer order. First,
we will derive the following expression for any ”well
behaved” function f ,

f (x+ y) = eiyp̂x f (x)e−iyp̂x 1, (69)

where p̂x = −id/dx is the operator introduced in
expression (11). Because e−iyp̂x 1 = 1, developing the f
function in a Taylor series (we call cn to the coefficients
in the expansion) and using the linearity of the eiyp̂x

operator,

eiyp̂x f (x)e−iyp̂x 1 = eiyp̂x f (x) = eiyp̂x
∞

∑
k=0

ckxk

=
∞

∑
k=0

ckeiyp̂x xk. (70)

Now

eiyp̂x xk =
∞

∑
l=0

(iy)l

l!
(−i)l dl

dxl xk =
k

∑
l=0

(y)l
(

k
l

)
xk−l

= (x+ y)k, (71)

then

eiyp̂x f (x)e−iyp̂x 1 =
∞

∑
k=0

ck(x+ y)k = f (x+ y), (72)

as we wanted to prove.
Now consider the Bessel function Jn evaluated at x + y.
From expression (69) we have

Jn(x+ y) = eiyp̂x Jn(x)e−iyp̂x 1, (73)

because e−iyp̂x 1 = 1, and developing the first exponential
in Taylor series, we obtain

Jn(x+ y) =
∞

∑
m=0

ym

m!
dm

dxm Jn(x). (74)

To calculate the m-derivative of Jn, we use the integral
representation (66) to write

dm

dxm Jn(x) = im
1

2π

∫ π

−π
sinm τe−i(nτ−xsinτ)dτ, (75)

substituting sinτ = (eiτ −e−iτ)/2i, and using the binomial
expansion,

dm

dxm Jn(x) =

=
1

2m+1π

m

∑
k=0

(−1)k
(

m
k

) π∫
−π

ei(m−k)τ e−ikτ e−i(nτ−xsinτ)dτ

=
1

2m
1

2π

m

∑
k=0

(−1)k
(

m
k

) π∫
−π

e−i[(n−m+2k)τ−xsinτ]dτ,

(76)

and therefore, using again the integral representation (66),
we obtain

dm

dxm Jn(x) =
1

2m

m

∑
k=0

(−1)k
(

m
k

)
Jn−m+2k(x). (77)
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Natural Sciences Publishing Cor.



6 H. Moya-Cessa, F. Soto-Eguibar: Operator methods applied to special functions

Substituting this last expression in equation (74), we
obtain (we have taken the sum up to infinite as we add
only zeros)

Jn(x+ y) =
∞

∑
m=0

ym

m!
1

2m

∞

∑
k=0

(−1)k
(

m
k

)
Jn−m+2k(x). (78)

We now change the order of summation and start the
second sum at m = k (because from m < k all the terms
are zero)

Jn(x+ y) =
∞

∑
k=0

(−1)k

k!

∞

∑
m=k

ym

2m(m− k)!
Jn−m+2k(x). (79)

We do now j = m−2k and obtain

Jn(x+ y) =
∞

∑
k=0

(−1)k

k!

∞

∑
j=−k

y j+2k

2 j+2k( j+ k)!
Jn− j(x), (80)

take the second sum from minus infinite, and exchange the
order of the sums

Jn(x+ y) =
∞

∑
j=−∞

Jn− j(x)
∞

∑
k=0

(−1)k

k!
y j+2k

2 j+2k(m+ k)!

=
∞

∑
j=−∞

Jn− j(x)J j(y). (81)

The final expression

Jn(x+ y) =
∞

∑
k=−∞

Jn−k(x)Jk(y) (82)

is known as the addition formula for the Bessel functions
of the first kind of integer order.

5 Conclusions

We have shown how to apply some of the formalism of
operator theory to some special functions, namely,
Hermite and Laguerre polynomials and Bessel functions.
We have applied them to obtain some known series of
functions, such as the addition formula for Bessel
functions, and some, to our knowledge, not known series,
such as the sum of even Hermite polynomials.
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