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We describe the transition of a set of optical modes following a Markov chain process, where the mean value of the
amplitude converge to a new type of partially coherent mode, with the property that the coherence features are
easily tunable with the parameters of the chain. The amplitude of the resulting mode depends on the probability
transition of the chain. As a prototype, we establish an analogy with gambler’s chain ruin, using as a basis for
the vector space the Bessel modes of integer order. Computer simulations are shown. © 2015 Optical Society
of America
OCIS codes: (030.0030) Coherence and statistical optics; (030.4070) Modes.
http://dx.doi.org/10.1364/OL.40.000863

Mode theory is a powerful model used to study the con-
temporary optics [1–5]. Following Durnin’s definition [6],
an optical mode is an exact solution to the Helmholtz
equation, ∇2ϕ�x; y; z� � K2ϕ�x; y; z� � 0, with the form,

ϕ�x; y; z� � f �x; y� exp�iβz�; (1)

where the function f �x; y� satisfies the eigenvalue
equation,

∇2
⊥f �x; y� � K2f �x; y� � β2f �x; y�: (2)

A great variety of modes have been identified solving
the corresponding eigenvalue equation in different
reference systems [7–11]. The objective of this present
Letter is to describe the synthesis of partially coherent
modes by means of a stochastic process of the Markov
chain type [12,13]. This generates modes with tunable
coherence parameters, thereby increasing the potential
applications of mode theory. We begin our analysis with
the identification of the matrix structure of completely
coherent modes, and then use this representation to
match it with the transition matrix of a Markov chain.
The study is supported by the fact that the set of optical
modes propagating in the same direction and with the
same phase value β has the structure of a vector space.
Without loss of generality, we consider propagation
along the z-coordinate, using the set of Bessel modes
of integer order as vector space basis,

feiβzJn�2πrd�einθg n � 0;�1;�2;…: (3)

This basis is easily identified by the fact that a com-
pletely coherent optical mode, also known as diffraction
free beam, has an associated frequency representation
given by

T�u; v� � H�u; v�δ�u2 � v2 − d2�; (4)

where u, v are the spatial frequencies, H�u; v� is an
arbitrary function, and δ is the Dirac delta function with

circular geometry. The amplitude distribution in the
optical field can be obtained using the angular spectrum
model, whose amplitude values in cylindrical coordi-
nates, at an arbitrary point p, is given by [3]

φ�r; θ; z� � eiβz
X
n

Jn�2πrd�einθ
Z

H�ϕ�e−inϕdϕ: (5)

Equation (5) is the general expression of any given am-
plitude function for a completely coherent mode, and it is
a linear combination of Bessel modes. The coefficients
for the linear combination are obtained from the modu-
lation function H�ϕ� given by

αn �
Z

H�ϕ�e−inϕdϕ: (6)

The geometry and certain key physical features of the
mode can be obtained by calculating the mode irradiance
distribution, which is obtained by taking the square
modulus of the amplitude function,

I�p� � jφ�r; θ; z�j2

�
X
n;m

Jn�2πrd�eiθnαnm
X
n;m

Jm�2πrd�e−iθm; (7)

where

αnm � αnα
�
m �

ZZ
H�ϕ�H��ϕ0�einϕe−imϕ0

dϕdϕ0: (8)

The mode irradiance given in Eq. (7) does not depend
on the z-coordinate. This implies morphological invari-
ance along the z-coordinate, thus corroborating the
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nondiffractive behavior of the optical mode. Rewriting
Eq. (7) in matrix form gives

I�r� ��J0�2πrd�; J1�2πrd�eiθ;…; Jn�2πrd�einθ…�0
BB@
jα00j2 α0α

�
1 α0α

�
n

α1α
�
0 jα11j2 α1α

�
n

αna�0 αna�1 jαnnj2

1
CCA
0
BB@

J0�2πrd�
J1�2πrd�e−iθ
Jn�2πrd�e−inθ

1
CCA: (9)

The central matrix constitutes the fundamental struc-
ture on which Markovian modes will be constructed.
Each term in the matrix describes the interaction
strength between the elements of the basis; for example,
the term α01 determinates the fraction of energy that can
be transferred from the zero-order Bessel mode to the
one-order Bessel mode. From Eq. (9), we can identify
an important case: all the elements in the interaction ma-
trix are zero except for a single term located on the prin-
cipal diagonal. When this occurs, we know that the
optical field corresponds to a pure mode,

φ�r; θ; z� � αneiβzJn�2πrd�einθ: (10)

This concept will be used below to define the purity of
the Markovian mode.
Up to this point, our analysis has been related to

completely coherent modes. The partial coherence ef-
fects appear when the modulation function is time depen-
dent, i.e., H�ϕ; t�. Then, each term in the interaction
matrix must be replaced by its expected value,

J�a� �
0
@ hjα0j2i hα0α�1i hα0α�ni
hα1a�0i jα1j2 hα1a�ni
hαnα�0i hαnα�1i hjαnj2i

1
A; (11)

this expression has the form of a coherence matrix.
Considering an ergodic behavior, the coherence matrix

elements can be calculated using the angular correlation
function given by

hαnα�mi �
ZZ

ϕϕ0einϕe−imϕ0
ρ�ϕ;ϕ0�dϕdϕ0; (12)

where ρ�ϕ;ϕ0� is the joint probability density function.
Analysing the coherence matrix by files, we can deter-

mine how energy is redistributed between all elements of
the basis. For example, the k-file determines the energy
of the k-order Bessel mode that is interchanged between
the other Bessel modes, i.e., all files include information
on irradiance distribution from all corresponding ele-
ments of the basis.
From the coherence matrix, an accurate quantification

of how the irradiance of the i-th Bessel mode is inter-
changed between the other elements of the basis is ob-
tained by means of file entropy

Si � −

Xn
k�1

jαikj ln
�Xn

k�1

jαikj
�
: (13)

The reason for proposing these measurements arises
from the fact that entropy allows the establishment of
an order relation in the system. In this sense, file entropy
is a way to describe strength irradiance between all ele-
ments of the basis. From this definition, it is easy to dem-
onstrate that entropy for a pure mode is zero, which
means that no interaction with other members of the ba-
sis exists. The file entropy values generate a row vector
of the form

S⃗ � �S0 S1 … Sn �T ; (14)

and order relation is established by ordering the entropy
values in decreasing order Sk > Sq > Sp � Ss > …. This
means that the k order Bessel mode generates the maxi-
mum irradiance interaction among other members of the
basis, the following element in order of importance is the
Bessel mode of order q, and that p and s modes contrib-
utes in the same proportion to the synthesis of the par-
tially coherent mode.

As an example to illustrate the latter, we obtain the co-
herence matrix when the joint probability density func-
tion is uniform, i.e., ρ�φ;φ0� � a. For the calculation of
the matrix elements, we use the Eq. (12) obtaining
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If we consider only the first five modes, the row en-
tropy to the partially coherent mode is

S⃗ � � 0.35 0.21 0.136 0.102 0.083 �T : (16)

This means that the pure mode that best fits the par-
tially coherent mode is the zero-order Bessel mode.
Finally, to quantify the similarity between the partially
coherent mode and the pure mode, we define the vector
purity, which is

σ⃗ � � 1 − S0
0 1 − S0

1 … 1 − S0
n �T ; (17)

where S0 is Von Newman entropy [14], calculated using
only the elements on the principal diagonal,

S0
n � −

hjanj2i
trJ

ln
�hjanj2i

trJ

�
; (18)

where trJ is the trace of the coherence matrix. We re-
mark that file entropy is complementary to the analysis
presented by Barakhat [14]. Up to this point, the analysis
presented here describes the structure of the partially co-
herent mode, where the ergodic hypothesis is implicit, a
sufficient condition when the coherence parameters
have a fixed value. The ergodic hypothesis will be elim-
inated for the synthesis of Markovian modes.
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In this section we go a step further in the synthesis of
the partially coherent modes. In particular, we demon-
strate the synthesis of modes whose coherence parame-
ters are tunable using a Markov chain process. The
prototype mode is constructed in analogy with gambler’s
chain ruin with four states; however, its generalization
can be implemented to other Markov chains by means
of its matrix transition [12]. The Markov chain is built
as follows. Let a gambler have an initial asset of either
“1” or “2” units. The gambler beats one unit per trial,
and the game is over when his assets reach “0” or “3.”
The Markov chain is sketched in Fig. 1.
The states “0” or “3” are known as absorbent states

and “1” and “2” as transient states. To incorporate the
optical features, the set of states f0; 1; 2; 3g is matched
with Bessel modes fJ0; J1; J2; J3g. The evolution of
the chain is determined by the transition probability
matrix, given by

0
BB@
1 0 0 0
p 0 q 0
0 p 0 q
0 0 0 1

1
CCA; (19)

where p is the probability of losing and q is the proba-
bility of winning. Evolution of the Markov chain de-
pends on the initial probability vector, whose form is
given by (0, α, β, 0) that satisfies α� β � 1, where α
is the probability that the gambler has “1” assets, and
β is the probability that he has “2” assets. Applying suc-
cessively the transition matrix to the initial vector and
after N steps, the outcome vector acquires the form
P�0�, P�1�, P�2�, P�3�, where

P�0� � α
XN
0

αPn�1qn � βP2
XN
0

Pnqn;

P�1� � βqnPn�1 if n even;

P�1� � αqnpn if n odd;

P�2� � αqnPn�1 if n even;

P�2� � βqnpn if n odd;

P�3� � αq2
XN
0

Pnqn � β
XN
0

Pnqn�1: (20)

P�0� is the probability that the mode reaches the state
“0”, recovering the structure of the zero-order Bessel
mode, and P�3� is the probability that the mode reaches
the three order Bessel mode.
For N tending to infinity, the probabilities P�1� and

P�2� tend toward zero. This can be corroborated because
the sum of probabilities corresponding to the states “0”
or “3” is one. The amplitude of the Markovian mode

markedly depends on the sequence of the chain. In
Tables (1) and (2), we show the possible probabilistic
correlation that follows the chain. When the experiment
is performed N times, the average number of appearan-
ces the absorbent states are shown in the third column.

From the values listed in Tables 1 and 2, we can deduce
the average number of times that each mode appears. For
J1 and J2 modes, the average number of times that they
appear is N�α� 1� and N�β� 1�, respectively. Then, the
amplitude representation for the Markovian mode is

φ�r; θ; z� � A exp�iβz�f �r; θ� (21)

f �r;θ��N
�
�α�1�J1eiθ��β�1�J2ei2θ�
fαp�αqp2�βp2gJ0�fβq�αq2�βpq2gJ3ei3θ

�
;

which is a linear combination containing only the first
four elements where the amplitude values depend on
both probability transition and initial probability. The
corresponding elements of the coherence matrix are

hα00i � �αp� αqp2 � βp2�2;
hα01i � hα10i�αp� αqp2 � βp2��α� 1�;
hα02i � hα20i�αp� αqp2 � βp2��β� 1�;
hα03i � hα30i�αp� αqp2 � βp2��βq� αq2 � βpq2�;
hα11i � �α� 1�2;
hα12i � hα21i � �α� 1��β� 1�;
hα13i � hα31i � �α� 1��βq� αq2 � βpq2�;
hα23i � hα32i � �β� 1��βq� αq2 � βpq2�
hα33i � �βq� αq2 � βpq2�2: (22)

Fig. 1. Diagram of the gambler’s chain ruin.

Table 1. Description of Probability Evolution Starting
with State “1”

Initial State “1”

Sequence of
the Chain Probability

Average No. of
Appearances of
Absorbent States

P�1� → P�0� αp �Nαp�J0
P�1� → P�2� → P�3� αq2 �Nαq2�J3
P�1� → P�2� → P�1� → P�0� αqp2 �Nαqp2�J0

Table 2. Description of the Probability Evolution
Starting with State “2”

Initial state “2”

Sequence of
the Chain Probability

Average No. of
Appearances of
Absorbent States

P�2� → P�3� βq �Nβq�J3
P�2� → P�1� → P�0) βp2 �Nβp2�J0
P�2� → P�1� → P�2� → P�3� βpq2 �Nβpq2�J3
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The coherence degree between the elements of the ba-
sis is given by the probabilistic correlation divided by the
trace of the matrix

γij �
1

TrJ
hαiji; (23)

the file entropy of the Markovian mode is

Si � −

X3
k�0

γik ln γik; (24)

which depends on the chain parameters. As in the pre-
vious section, taking the largest value of file entropy
value, we can identify the pure mode that best fits the
Markovian mode. The corresponding elements of the
purity vector are given by

σi � 1 − S0
i; (25)

where S0 is given by Eq. (18). To clarify these concepts,
we performed a computer simulation. In Fig. 2, we show
the irradiance convergence for two possible Markovian
modes following gambler’s chain ruin. The influence of
the probabilistic parameters generates an interaction be-
tween the constitutive modes generating a tunable inter-
ference that is evident in the irradiance distributions. For
the simulation, the probabilistic parameters used are
shown in the figure caption.
As conclusions, we completely described coherent

modes using a matrix representation. With this represen-
tation, we identified the parameters that allow the incor-
poration of partial coherence effects. The study was
extended to the synthesis of modes whose coherence de-
gree is tunable according to a Markov chain. We used as
prototype the gambler’s chain ruin. For description of the
coherence features, we proposed the file entropy func-
tion, generating a vector entropy, which allows us to de-
duce an order relation among its components. These
results allowed identifying the pure mode that best fits
the partial coherence mode. The theory behind this arises
from the fact that coherence degree yields information
on the correlation between two modes; however, the en-
tropy function includes information on how the irradi-
ance of each mode is interchanged among other
modes offering a global description. From the entropy
values of the elements on the principal diagonal, we es-
tablished a purity vector, which is a descriptive measure
for the similarity of the partial coherence mode to the
pure mode. File entropy is complementary to Von
Newman entropy: it offers a deeper understanding of
the coherence features of the mode. The theory was con-
structed using as basis the integer order Bessel modes;
however, an arbitrary basis could be incorporated in
our treatment. A possible experimental set up can be per-
formed as follows:

(i) The Fourier transform of Eq. (21) is recorded on a
liquid crystal display (LCD).
(ii) The liquid crystal display (LCD) is illuminated with
a plane wave.

The Markovian mode is a diffraction-free beam be-
cause each compound has the same phase values along
the z-coordinate. These kinds of modes offer interesting
applications such as tunable spectroscopy, trapping par-
ticles, and tunable holography.

The authors MATR and RSX thank CONACyT for the
grant.
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