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Ion-laser interaction in dispersive regimes: solution using squeeze operators
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We study the resonant interaction between a trapped ion and a laser field. By tuning the field intensity far away from the
trapping frequency, namely low and high intensity regimes, we arrive at so-called dispersive Hamiltonians that may be
simplified via the application of squeezing transformations. We analyse the system dynamics in phase space.
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1. Introduction

By shining light onto a trapped ion it is possible to control its
vibrational wavefunction in order to produce some specific
quantum states, i.e. engineer non-classical states of the ion’s
vibrational motion [1–10]. However, such way to control
the system is usually done in the low intensity regime,
where the Rabi frequency (proportional to the intensity of
the laser field) is much smaller than the trapping frequency.
Moreover, most of the studies so far can take into account
very specific sets of parameters, such as the detuning (the
difference between the laser field and the atomic transi-
tion frequency) being an integer multiple of the trapping
frequency.

Some efforts have been devoted to the solution for some
more general sets of parameters [11], namely medium and
high intensity regimes. Those regimes are reachable by
means of a unitary (similarity) transformation [12] of the
full ion-laser Hamiltonian that shows that the ion-laser in-
teraction and the atom-quantized-field interaction are com-
pletely equivalent. Then it is possible to apply some known
methods to achieve different interactions, and/or to apply
some recent methods to achieve a complete analytic
solution.

Here, we will focus on two regimes: the high and low
intensity ones, that allow adiabatic solutions, i.e. they
deliver solvable effective Hamiltonians. We will consider
the terms that are usually neglected when arriving to the
effective (dispersive) Hamiltonians in order to give a more
exact analysis. The appearance of squeeze operator
transformations allows exact solutions in this case.

∗Corresponding author. Email: azuniga@esfm.ipn.mx

2. Ion-laser Hamiltonian

The ion-laser Hamiltonian in the optical rotating wave
approximation (RWA) can be written as

Ĥion = νâ†â + δ

2
σ̂z +�

(
σ̂+ D̂(iη)+ σ̂− D̂†(iη)

)
, (1)

where D̂(iη) = eiη
(
â+â†

)
is the Glauber displacement oper-

ator, δ = ωa−ωL is the laser-ion detuning, ν is the harmonic
trapping frequency, ωa is the atomic transition frequency,
ωL is the field frequency, � is the Rabi frequency and η is
the Lamb–Dicke parameter.

Based on the unitary transformation

R̂ = ei â†â π2 e
π
4 (σ̂+−σ̂−)e−i η2

(
â+â†

)
σ̂z , (2)

it has shown that the atom-field and ion-laser interactions
are in fact exactly equivalent [12]. The above transformation
may be written in the 2×2 basis related with the Pauli-spin
matrices and with the help of the displacement operator as

R̂ = 1√
2

ei â†â π2

(
D̂†(β) D̂(β)
−D̂†(β) D̂(β)

)
, (3)

with β = iη/2, such that Ĥion = R̂ Ĥion R̂†, gives precisely
the atom-field interaction Hamiltonian

Ĥion = νâ†â +�σ̂z + ην

2

(
σ̂+ + σ̂−

)
(â + â†)

+ δ

2

(
σ̂+ + σ̂−

) + νη2

4
. (4)

© 2015 Taylor & Francis
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By considering the on-resonance interaction δ = 0 we
can proceed with a set of small rotations [13],1 to obtain a
diagonal effective Hamiltonian via the unitary transforma-
tions

Û1 = eξ1
(
â†σ̂+−âσ̂−

)
, Û2 = eξ2

(
âσ̂+−â†σ̂−

)
, (5)

with the parameters

ξ1 = ην

2

(
1

2�+ ν

)
, ξ2 = ην

2

(
1

2�− ν

)
. (6)

Taking into account that ξ1, ξ2 � 1, we may cast the
Hamiltonian (4) into the effective Hamiltonian

Ĥeff = Û1Û2ĤionÛ †
2 Û †

1 ,

≈ νâ†â +�σ̂z + χion

(
â†â + 1

2

)
σ̂z

+ g
(

â2 + â†2
)
σ̂z . (7)

where χion = 2η2ν2�/(4�2 − ν2) = 2g. We have also
used the well-known expansion eξ Â B̂e−ξ Â = B̂+ξ [ Â, B̂]+
ξ2

2! [ Â, [ Â, B̂]]+ · · · and have kept terms to first-order in ξ1
and ξ2, i.e.

Û2σ̂+Û †
2 ≈ σ̂+ + ξ2â†σ̂z,

Û2σ̂−Û †
2 ≈ σ̂− + ξ2âσ̂z,

Û2σ̂zÛ †
2 ≈ σ̂z − 2ξ2âσ̂+ − 2ξ2â†σ̂−,

Û2âÛ †
2 ≈ â + ξ2σ̂−,

Û2â†Û †
2 ≈ â† + ξ2σ̂+,

Û1σ̂+Û †
1 ≈ σ̂+ + ξ1âσ̂z,

Û1σ̂−Û †
1 ≈ σ̂− + ξ1â†σ̂z,

Û1σ̂zÛ †
1 ≈ σ̂z − 2ξ1â†σ̂+ − 2ξ1âσ̂−,

Û1âÛ †
1 ≈ â − ξ1σ̂+,

Û1â†Û †
1 ≈ â† − ξ1σ̂−.

Note that the Hamiltonian (7) only involves diagonal
elements. i.e.

Figure 1. Probability to find the ion in its ground state as a function of time. The parameters used are η = 0.08, � = 0.250, ν = 1 and
α = 3. The figure below is a larger view of the “steady” region shown in the rectangle above. (The colour version of this figure is included
in the online version of the journal.)
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1444 A. Zúñiga-Segundo and H.M. Moya-Cessa

Ĥeff =
[
(ν + χion)â†â + g(â2 + â†2)+ (�+ g) 0
0 (ν − χion)â†â − g(â2 + â†2)− (�+ g)

]
, (8)

on which we perform a squeeze transformation, in order to
obtain the transformed Hamiltonian in a simpler form

Ĥχ = ŜĤeff Ŝ† =
[
ωeâ†â +�+ 1

2 (ωe − ν) 0
0 ωgâ†â −�+ 1

2 (ωg − ν)

]
=

[
Ĥe 0
0 Ĥg

]
, (9)

Figure 2. Husimi Q-function. The parameters are the same as in Figure 1 and the times are: (a) t = 0, (b) t = 85.019, (c) t = 367.56,
(d) t = 735.13. (The colour version of this figure is included in the online version of the journal.)
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with

Ŝ =
[

Ŝ(re) 0
0 Ŝ(rg)

]
, (10)

andωe = √
ν2 + 4gν,ωg = √

ν2 − 4gν, re = 1
4 ln

[
ν

ν+4g

]
and rg = 1

4 ln
[

ν
ν−4g

]
.

3. Dynamics and phase space

With the help of the above transformations, the evolution
operator U (t) = exp(−it Ĥion)may readily be applied to an
initial condition | ψ(0)〉 to render the evolved wave function

|ψ(t)〉 = e−itĤion | ψ(0)〉 = R̂†Ŝ†e−itĤchi Ŝ R̂ | ψ(0)〉.
(11)

This may become tedious given the number of unitary trans-
formations used, but after some algebra we may write the
Husimi Q-function for the vibrational wave function as

Q(γ ) = 1

π

[
|〈γ | ψe〉|2 + ∣∣〈γ | ψg〉

∣∣2
]
, (12)

where

〈γ | ψe〉 = 〈γ | D̂(iη/2)Ŝ(re)e
−itĤe Ŝ†(re)D̂

†(iη/2) | iα〉
+ 〈γ | D̂(iη/2)Ŝ(rg)e

−itĤg Ŝ†(rg)D̂
†(iη/2) | iα〉,

(13)

and

〈γ | ψg〉 = 〈γ | D̂†(iη/2)Ŝ(re)e
−itĤe Ŝ†(re)D̂

†(iη/2) | iα〉
− 〈γ | D̂†(iη/2)Ŝ(rg)e

−itĤg Ŝ†(rg)D̂
†(iη/2) | iα〉.

(14)

In Figure 1, we plot the probability to find the ion in its
ground state provided it was initially in the excited state
and the initial vibrational wave function was a coherent
state with imaginary amplitude, iα. In Figure 2, we plot
the Husimi Q-function for the same parameters as Figure 1
and different times. The effects produced by the squeezing
properties that arise because the terms proportional to the
creation and annihilation operators squared in Equation (8)
may be seen in the enlarged part of Figure 1, where the
collapse region is shown to have little oscillations. The
effect, however, is not noticeable in phase space, where
the Q-function behaves as expected: splitting into two
bumps and its later recombination.

Finally, although the evolution of the initial bump in
phase space produced by the initial coherent state splits into
two bumps, each bump has different frequencies ωg and ωe

but neither in counterrotate way on the circle
| α |= 3, because we did not transform to a frame rotating
at frequency ν. However, the collapse of the oscillations is

still due to the splitting into the two bumps, and the revival
of oscillations to their recombination [14,15].

4. Conclusions

We have shown that a more exact analysis may be obtained
in the “dispersive regimes”. This may be done via a squeeze
operator that allows to diagonalize the Hamiltonian (8) in
terms of simple number operators that then are easy to han-
dle. Although the application of all the transformations is
tedious, the manipulation of the equations is straightforward
as the evolution operator may be written in terms of well-
known operators which allows to find the dynamics and see
small oscillations in the probability of finding the ion in its
ground state as a function of time.

Disclosure statement
No potential conflict of interest was reported by the authors.

Note

1. We do not do adiabatic elimination, but instead a set of small
rotation as we think both methods of obtaining an effective
Hamiltonian give us the same information [13].
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