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In this work, we present a new family of modes of confocal resonators eigenfunctions of the Fraunhofer diffraction
integral, the elegant Cartesian Laguerre–Hermite–Gaussian modes. We show that these modes can be single-pass or
round-trip eigenmodes of the resonator depending on the focal distance of the mirrors and their separation. We
study their properties and compare them to the well known normal and elegant Hermite and Laguerre–Gauss modes
of laser resonators. The new family of modes are not structurally stable on propagation as normal Gaussian modes
nor present a monotonic intensity evolution as the normal and elegant Gaussianmodes.We also demonstrate that on
propagation, they present the self-healing property. © 2015 Optical Society of America
OCIS codes: (070.2580) Paraxial wave optics; (070.5753) Resonators; (070.7345) Wave propagation; (140.3410) Laser

resonators; (140.0140) Lasers and laser optics; (140.4780) Optical resonators.
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It is well known that the paraxial wave equation accepts
different families of propagating modes being the most
known for the normal Hermite–Gauss (HG) modes in
Cartesian coordinates and the normal Laguerre–Gauss
(LG) modes in cylindrical coordinates. These families
are infinite, and on propagation, they are structurally sta-
ble maintaining their shape, spreading transversely their
energy, and reducing their amplitude. These propagating
modes can also be the internal modes of confocal laser
resonators [1,2]. About a decade later ofHGandLGbeams
having been introduced, Siegman proposed a variant of
the HG modes that he referred to as the elegant form
of the Hermite–Gauss (eHG) beams. The main feature is
that they show a mathematical symmetry between the ar-
gument of the Gaussian function and that of the Hermite
functions [3]. These kind of modes were found useful in
the description of the refraction and reflection of normal
Gaussian beams at dielectric interfaces and also in the
propagation of beams emerging from a complex-graded
index medium [4,5]. Later, paraxial and nonparaxial
elegant Laguerre–Gauss (eLG) beams were formally
demonstrated [6–8].
Almost three decades later the unified form for

Hermite–Gauss and Laguerre–Gauss beams was pro-
posed and called Hermite–Laguerre–Gaussian beams [9].
It took just a few years for the corresponding elegant
Hermite–Laguerre–Gaussian beams to be demonstrated
[10]. These, normal and elegant beams are two dimen-
sional, and they are characterized by the continuous
modulation of a parameter that represents the transition
from a Cartesian Hermite–Gaussian beam into a circular
Laguerre–Gaussian beam or vice versa.
In this Letter, we introduce the family of elegant

Cartesian Laguerre–Hermite–Gaussian (eCLHG) beams
as cavity modes of confocal resonators. They are one-
dimensional from which Cartesian 2D beams can be con-
structed. The eCLHG cavity modes are not structurally

stable on propagation as normal HG and LG beams do.
However, since the eCLHG beams are eigenfunctions
of the Fraunhofer diffraction integral, we demonstrate
that they are eigenmodes of confocal laser cavities. We
present their properties and compare them with normal
and elegant HG and LG beams.

Optical beams can be described with the paraxial
wave equation [3], in dimensionless form it can be writ-
ten as
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The equation is normalized in the transverse plane with
respect to the intensity beam waist w0. This parameter is
defined assuming the intensity of a Gaussian beam of the
form jE�x; y; z � 0�j2 ∝ exp�−r2∕w2

0�, that decays to 1∕e
of its maximum amplitude when r �
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the transverse normalization is ξ � x∕w0, η � y∕w0 and
ρ �

����������������
ξ2 � η2

p
. Along the longitudinal axis, the normaliza-

tion is with respect to the diffraction or Rayleigh length
LD � kw2

0∕2 � πw2
0∕λ with k � 2π∕λ the wavenumber

and λ the wavelength of the light beam. The longitudinal
normalization is then z0 � z∕LD. In what follows, we will
drop the prime to simplify the notation.

Once normalization is performed to the initial condi-
tion of the amplitude, we have u�ξ; η; z � 0� � exp
�−�ξ2 � η2�∕2�. We observe that the form of this field am-
plitude also introduces an extra elegance in the descrip-
tion of the propagation of a Gaussian beam. When
inserted into Eq. (1) and propagated, a normalized dis-
tance of z � 2 the intensity decays by a factor of 2 and
the beam area, measured at the beam width, is twice of
that of the initial condition.

The infinite family of solutions in Cartesian coordi-
nates of Eq. (1) are the Hermite–Gauss beams [2]
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with m and n defining the order of the mode, and E0 is
the field amplitude factor. The corresponding Laguerre–
Gauss family of solutions of (1) in cylindrical coordinates
with radial symmetry are [2]
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where again n defines the order of the mode, and the ra-
dial symmetry implies that there is not azimuthal depend-
ence indicated by the zero sub-index. Both families of
beams share the same dependence on the propagation
coordinate for the beam width w�z� �

�������������������
1� z2∕4

p
, the

transverse phase front R�z� � �z∕2��1� �2∕z�2�, and the
Gouy phase shift Φ�z� � tan−1�z∕2�. From these rela-
tions, notice that the introduced normalization and initial
condition also result in a nice elegant form for the trans-
verse and longitudinal phases of the Gaussian beam
when is propagated to z � 2.
The field amplitudes at z � 0 are of the form

HGm;n�ξ;η;0� �Hm�ξ�Hn�η�exp�−ρ2∕2� and LG0;n�ρ;0��
Ln�ρ�exp�−ρ2∕2�. Maintaining the condition of unitary
Gaussian width intensity, the corresponding normalized
elegant modes are [7]
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By combining these equations, collapsing the radial co-
ordinate to the ξ axis (setting η � 0), we introduce a new
family of one-dimensional elegant Cartesian Laguerre–
Hermite–Gauss (eCLHG) beams that at their waist can
be written as
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�
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where �a� is the integer part of a. Notice the Laguerre
function is no longer defined in a two-dimensional do-
main but in the one-dimensional axis ξ by collapsing
the η coordinate. In this sense, the proposed eCLHG
modes are different from those reported as generalized
Hermite–Laguerre–Gaussian and elegant Hermite–
Laguerre–Gauss beams defined in two transverse dimen-
sions [9,10].

These new eCLHG modes, unlike the eHG and eLG
modes, are eigenfunctions of the Fourier transform oper-
ator, namely

Em�kξ� �
1������
2π

p
Z

∞

−∞
Em�ξ�e−ikξξdξ; (7)

where kξ is the spatial frequency [11, 12]. Recalling that
this eigenfunction property is used for establishing the
confocal Cartesian and cylindrical laser resonator
modes, we conclude that the eCLHG beams must also
be modes of confocal cavities as the HG and LG beams
in Eqs. (2) and (3), respectively [2]. Interestingly enough,
we remark that eventhough the eHG and eLG beams
in Eqs. (4) and (5) do not satisfy the corresponding
two dimensional equation related to Eq. (7), they are still
asymmetric modes of a particular confocal resonators as
we will see below.

By the separability of the Gaussian function, the modes
of two-dimensional resonators can be easily constructed
in the next form

Em;n�ξ; η� � Em�ξ�En�η�: (8)

These 2D beams have a finer rectangular lattice struc-
ture and larger extension when compared to LG or HG
modes due to the increase on the order of the resulting
polynomial in their definition in Eq. (6).

To design the resonator cavity that supports these
modes, we use the equivalent lens-waveguide model [13].
The waveguide is composed by a sequence of equal
lenses separated a distance of 2f ; each lens described
by l�r� � exp�−ikr2∕2f �, being f their focal distance.
In normalized units l�ρ� � exp�−iρ2∕F �where F � f∕LD
is the normalized focal length of the lens. When an
eCLHG beam Eq. (6) passes through a lens of focal dis-
tance F placed at the origin, the field at the focal plane
has the same profile but is scaled according to

Em;n�ξ; η; z � F � � 2
F
Em;n

�
F
2
ξ;
F
2
η; z � 0

�
: (9)

From this expression, we see that in order to have ex-
actly the same field distribution at the mirrors of the cav-
ity, these must be of the same focal length F � 2 and be
separated by a distance L � F . Figure 1 shows a typical
propagation on the ξz–plane of all the discussed modes
within the corresponding unfolded cavity. At the bottom
of Fig. 1, the mode for m � n � 4 is shown and com-
pared with the corresponding normal and elegant LG
and HG modes with n � m � 4. The first and second
rows correspond to the normal LG and HG modes that,
analogously to the eCLGH mode, show a symmetrical
volume within the cavity. Not so for the elegant modes
that, nevertheless, reproduce themselves after a round
trip. The apparent disappearing of the energy for
the eHG is due to the fact that it diffracts away diagonally
from the ξz–plane to form four spots at the second mirror
[7]. Notice that after reflection from the second mirror
(plane at z � 2 of the unfolded cavity), the mode is re-
created at the first mirror (plane at z � 4). This seems
to be in contradiction with Siegman who said that the
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elegant eigenfunctions are not modes of conventional
spherical-mirror optical resonators. We believe that he
referred to that they are not symmetrical modes as is
the case for the normal HG and LG modes [3].
When F ≠ 2 Eq. (9) shows that the field of an eCLHG

mode at one mirror is the scaled version of the field at the
other, thus there will be modes that repeat only after a
complete round trip and will have an asymmetrical vol-
ume within the cavity, similar to the elegant HG and LG
modes shown in Fig. 1. Thus, the eCLHG modes can be
either symmetric as normal Gaussian modes or asymmet-
ric cavity modes as has been proved for elegant Gaussian
modes.
As mentioned above, from the bottom image in Fig. 1, it

is clear that the eCLHG modes are not structurally stable
in the sense that they do not maintain their shape on
propagation as normal Hermite–Gauss and Laguerre–
Gauss do, their initial maxima interweave creating an

oscillating intensity volume within the cavity. We can
observe a number of obscured regions that correspond
to the order n of the eCLHG cavity mode. There are the
same number of zeros in the axial intensity for the eCLHG
modes with even p, see Fig. 2(a). For the odd modes,
there is not similar behavior, and the axial intensity is
always zero.

The axial phase of the eCLHG modes has a very strik-
ing difference compared to the Gouy phase of any of the
normal or elegant modes that has a monotonic evolution.
For the eCLHG modes, the axial phase has a sinusoidal-
like oscillation with its axis slightly tilted with respect to
the propagation axis as can be observed in Fig. 2(b).
What is more remarkable is that this tilt can make the
axial phase to change its sign. The oscillatory phenome-
non occurs, and the tilt is the same for any of the modes
irrespective of the order n. Also we notice that the num-
ber of oscillations of the axial intensity is that of the order
mode as it is the number of minima for its axial intensity
within the cavity, see Fig. 2.

Finally, one more feature of these modes as eigenfunc-
tions of the Fraunfoffer diffraction integral is that this
new family of eCLHG modes can self-heal in the far field
when propagating in free space. Figure 3 shows the
highly obstructed beam of orderm � n � 4. The top plot
compares the intensities of the initial profile and its
scaled far field showing a clear self-healing of the beam
with some perturbation due to the diffraction effects of
the hard obstruction. The bottom 2D images complement
the picture of the self-healing.

In conclusion, we have proposed a new family of
modes of confocal resonators. They are eigenfunctions
of the Fraunhofer diffraction integral. We have shown
that, depending on the focal distance of the mirrors and
their separation, they can be single pass or round trip
modes. The former fill the cavity symmetrically, while
the latter are asymmetrical within the cavity volume. We
showed that elegant Hermite and Laguerre–Gaussian
modes can be round trip modes of confocal cavities.
The eCLHG modes have a very distinctive longitudinal
phase behavior when compared to normal and elegant
Gaussian modes, it oscillates and can even take negative

Fig. 1. Unfolded round-trip propagation of confocal cavity
modes order n � 4 (from top to bottom): normal Laguerre–
Gauss, normal Hermite–Gauss, elegant Laguerre–Gauss,
elegant Hermite–Gauss, and elegant Cartesian Laguerre–
Hermite–Gauss beams. Notice that the order of the eCLHG pro-
duces the same number of axial zeros within the cavity.

Fig. 2. Single pass intensity and phase on axis for elegant
Laguerre–Hermite–Gaussian mode order even with m � 4.
(a) Within the cavity, the intensity has n � 4 minima. The cor-
responding Gouy phase for LG and elegant modes is also mon-
otonic (not shown).

Fig. 3. Self-healing of elegant Laguerre–Hermite–Gaussian
modem � n � 4. The far field (dotted red line) has been scaled
to make a comparison with the original field intensity (continu-
ous blue line).
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values. Also, we have shown that this new family of
eCLHG modes have the property of self-healing.
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