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We discuss the generation of Hermite–Gauss and Ince–Gauss beams employing phase elements whose transmit-
tances coincide with the phase modulations of such beams. A scaled version of the desired field appears, distorted
by marginal optical noise, at the element’s Fourier domain. The motivation to perform this study is that, in the
context of the proposed approach, the desired beams are generated with the maximum possible efficiency. A
disadvantage of the method is the distortion of the desired beams by the influence of several nondesired beam
modes generated by the phase elements. We evaluate such distortion employing the root mean square deviation as
a figure of merit. © 2015 Optical Society of America
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1. INTRODUCTION

It is well known that Hermite–Gauss (HG) and Ince–Gauss
(IG) beams are solutions of the paraxial wave equation in
Cartesian and elliptic cylindrical coordinates, respectively [1,2].
Each one of these sets of fields forms a complete orthogonal
basis under which any function can be represented. These
fields, together with the Laguerre–Gauss beams, which are sol-
utions of the paraxial wave equation in circular cylindrical co-
ordinates, belong to the class of structurally stable optical fields.
Consequently, they are also self-transforming fields under the
Fourier transform operation. In the past, we have shown that
the efficient generation of certain fields that are invariant under
propagation can be realized using kinoform phase elements
(KPEs) [3–5]. The KPE of a complex optical field has a phase
transmittance that coincides with the phase modulation of such
a field. Recently, this codification technique was employed in
the generation of Mathieu–Gauss beams [6] and Laguerre–
Gauss beams [7]. A phase diffractive optical element (DOE)
for generating IG beams has been previously reported [8].
The phase of this DOE is given by the phase of the desired
IG beam, attenuated by the beam amplitude. In this work, we
propose to employ KPEs to synthesize the structurally stable
HG and IG beams. The Fourier transform of the desired beam,
which is a scaled version of it, is generated at the KPE Fourier
domain with relatively low noise. In Section 2, we review the
mathematical description of the HG and IG beams. Using the

orthonormal series of these beams, we analyze theoretically its
efficient generation using the kinoform technique. In Section 3,
we define the accuracy and efficiency parameters for evaluating
the KPE performance. A crucial feature of a KPE is the size of
its bounding pupil, which is subjected to an optimization proc-
ess that minimizes the RMS error of the generated beam with
respect to the desired beam. The numerically computed values
of efficiency and RMS are reported in Section 3, for a variety of
cases. Experimental results that corroborate our proposal are
presented in Section 4. In Section 5, we explain why the
Fourier transform of the desired HG and IG beams appears,
with relatively low error, at the KPE Fourier plane. At the
end of Section 5, we present final remarks and conclusions.

2. HERMITE–GAUSS AND INCE–GAUSS
KINOFORMS

The HG beams are exact solutions of the scalar paraxial wave
equation in Cartesian coordinates. Their complex amplitude is
expressed, at the waist plane z � 0, as

f p;q�x; y;wo� � Hp

� ffiffiffi
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where Hl �l � p; q� is the l th-order Hermite polynomial, ωo is
the beam waist, and r � �x2 � y2�1∕2 is the transverse radial
coordinate. Let us assume that the HG beam that we desire
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to generate is f m;n�x; y;wo�. The proposed KPE of this beam is
given by

km;n�x; y;wo� � sign�f m;n�x; y;wo��rect
�
x
a

�
rect

�
y
b

�
; (2)

where sign�σ� is equal to 1 for σ ≥ 0 and −1 otherwise, while
the product of the unidimensional rect functions represent a
rectangular pupil of sides a and b. The presence of the rectan-
gular pupil that limits the KPE transmittance in Eq. (2) is cru-
cial. The dimensions of this pupil have critical values that are
obtained employing an iterative optimization process, which is
described below.

Since the HG functions defined in Eq. (1) form a complete
orthogonal basis in R2, the KPE transmittance in Eq. (2) is
given by the series

km;n�x; y;wo� �
X∞
p�0

X∞
q�0

Ap;qf p;q�x; y;wo�; (3)

with coefficients

Ap;q �
Z Z

∞

−∞
km;n�x; y;wo�

f p;q�x; y;wo�
hp;q

dxdy; (4)

and hp;q � 2p�qp!q!πω2
o∕2. It is noteworthy that the term with

indices p � m and q � n, in Eq. (3), corresponds to the desired
HG beam f m;n�x; y;wo�, with a weighting factor Am;n. In gen-
eral, the argument of the integral in Eq. (4) presents many sign
oscillations that tend to reduce the absolute value of the coef-
ficients Ap;q. However, the integral argument for the coefficient
Am;n (and only for this coefficient) is a non-negative function.
In consequence, the �m; n�-order term in Eq. (3), which cor-
responds to the desired field, tends to be dominant. Indeed, it
can be shown that the KPE of the desired HG field is the phase
DOE whose expansion in orthogonal modes contains this
field with the maximum possible weighting factor. In order
to prove this result, let us consider a generic phase DOE with
transmittance

h�x; y� � exp�iψ�x; y��rect
�
x
a

�
rect

�
y
b

�
; (5)

which possess an arbitrary phase ψ�x; y�, within the domain
that corresponds to the rectangular pupil rect�x∕a�rect�y∕b�.

We can relate the DOE transmittance h�x; y� with the trans-
mittance of the desired field f m;n�x; y;wo�. This can be done by
representing the function h�x; y� in Eq. (5) by its orthogonal
series in the basis of HG modes defined in Eq. (1), obtaining

h�x; y� � Bm;nf m;n�x; y;wo� � dm;n�x; y;wo�; (6)

where

dm;n�x; y;wo� �
X∞

�p;q�≠�m;n�
Bp;qf p;q�x; y;wo�; (7)

and coefficients Bp;q are computed by the integral in Eq. (4)
replacing the function km;n�x; y; wo� by h�x; y�. It is interesting
to note that the desired mode f m;n�x; y;wo� and the term
dm;n�x; y;wo�, in Eq. (6), are mutually orthogonal, i.e., their in-
ternal product is null. Thus, expressing the desired mode as
f m;n�x; y; wo� � a�x; y� exp�iϕ�x; y�� and performing the

internal product with f m;n�x; y; wo� on both sides of Eq. (6),
we obtain

jBm;nj � C
����
Z Z

Ω
a�x; y� expfi�ψ�x; y� − ϕ�x; y��gdxdy

����; (8)

where C � �RRΩ a2�x; y�dxdy�−1 and the integration domain Ω
corresponds to the pupil that limits the transmittance h�x; y�.
In Eq. (8) we note that the upper bound limit for jBm;nj, given
by C j RRΩ a�x; y�dxdy�j, is obtained when

exp�iψ�x; y�� � exp�iϕ�x; y��; (9)

i.e., when the phase of the DOE is identical to the phase of the
desired field f m;n�x; y;wo� [9]. According to this result, the
orthogonal series of the phase DOE, whose transmittance coin-
cides with the phase modulation of the desired HG beam, con-
tains this beam with the maximum possible weighting factor.
On the other hand, from Eq. (6) we note that the DOE effi-
ciency, in the generation of the desired field, is proportional
to jBm;nj2. Thus, the upper bound limit for jBm;nj also ensures
a maximum value for the DOE efficiency.

Other fields to be synthesized are the even and odd IG
beams. They are solutions of the scalar paraxial wave equation
in elliptical coordinates and are written, at the waist plane
z � 0, as

f e
p;q�ξ; χ;wo� � Cp;q�iξ�Cp;q�χ� exp

�
−
r2

ω2
o

�
; (10a)

f o
p;q�ξ; χ;wo� � Sp;q�iξ�Sp;q�χ� exp

�
−
r2

ω2
o

�
; (10b)

where Cp;q and Sp;q are, respectively, the even and odd Ince
polynomials of order p and degree q. The integer indices p
and q, which are in the ranges of 0 ≤ q ≤ p and 1 ≤ q ≤ p
for even and odd functions, respectively, always have the
same parity, i.e., �−1�p−q � 1. The variables χ and ξ are
the radial and angular elliptic coordinates defined by x �
ωo�ϵ∕2�1∕2 cosh ξ cos χ and y � ωo�ϵ∕2�1∕2 sinh ξ sin χ,
where ϵ is the ellipticity parameter. The transmittance of the
KPE proposed to generate the beam f α

m;n�ξ; χ;wo� is given by

kαm;n�ξ; χ;wo� � sign�f α
m;n�ξ; χ;wo��P�x; y�; (11)

where α � fe; og and P�x; y� is an elliptical pupil, equal to 1 for
�x2a2 �

y2

b2� ≤ 1 and 0 otherwise. Similar to the rectangular pupil
for HG beams, the dimensions of the elliptical aperture for IG
beams are also subjected to an optimization process.

Since each set of IG beams in Eqs. (10a) and (10b) repre-
sents an orthonormal complete basis in R2 [10], the KPE in
Eq. (11) can be expressed by the series

kαm;n�ξ; χ;wo� �
X∞
p�0

Xp
q�0

Aα
p;qf α

p;q�ξ; χ;wo�; (12)

with coefficients

Aα
p;q �

Z Z
∞

−∞
kαm;n�ξ; χ;wo�f α

p;q�ξ; χ;wo�dS: (13)

It is noteworthy that the �m; n�th term of the series in Eq. (12)
corresponds to the encoded beam f α

m;n�ξ; χ;wo�, with a weight-
ing factor Aα

m;n. It is also noteworthy that the integrand in
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Eq. (13), expressed for Aα
m;n, becomes non-negative and max-

imizes the modulus of this coefficient. Similar to the case of
KPEs for HG beams, it can be shown that the orthogonal series
of the KPE for the desired IG beam contains this field with the
maximum possible weighting factor.

In principle, the above results point toward a convenient
generation of the desired HG and IG fields using their KPE s.
In Section 3 we will optimize and evaluate the HG and IG
beams generated at the Fourier domain of their KPEs.

3. ACCURACY OPTIMIZATION AND EFFICIENCY

In this section, we present an initial performance evaluation of
KPEs as generators of HG and IG beams. A complementary
evaluation is presented in Section 4. First we focus our atten-
tion on the KPE pupil size. This size is critical for the efficient
generation of the desired field. We look for the pupil size that
minimizes the RMS deviation of the generated beam, with re-
spect to the desired beam.

Since the KPEs in Eqs. (2) and (11) present uniform inten-
sity, within their limiting pupils, the desired HG and IG beams
are not visible at the planes of these phase elements. However, it
is found that scaled versions of these beams, given by their
Fourier transforms, are clearly distinguished at the Fourier do-
mains of the KPEs. An analytic and qualitative explanation of
this result is discussed in Section 5. For the moment, we present
an initial assessment of the beams generated by the KPEs, in the
context of the pupils’ optimization.

We start the optimization of the limiting pupil, for any of
the KPEs, by determining the initial pupil dimensions ao and
bo. To illustrate the determination of these dimensions we con-
sider the HG beam f 4;4�x; y;wo�, whose modulus and phase
are displayed in Fig. 1. In Fig. 1(a) we show horizontal and
vertical reference lines (dotted trace) that cross the peak ampli-
tude points at the corners of the field. The initial pupil, de-
picted in dashed lines, is determined by the points in the
reference lines where the amplitude field is 1/100 of the adja-
cent peak amplitude. Two of these points, at the top of the
image, are identified by arrows. The initial pupil dimensions
of the KPE are optimized in order to obtain the desired field,
at the Fourier domain of this phase DOE, with the minimum
RMS. For an arbitrary function f �x; y�, expressed in rectangu-
lar coordinates �x; y�, we employ the following definition for its
2D Fourier transform:

F�u; v� �
Z

∞
Z
−∞

f �x; y� exp�−i2π�ux � vy��dxdy: (14)

Using this definition, we compute the Fourier transforms (F)
of the desired fields as Fm;n�u; v;wo� � Fff m;n�x; y;wo�g and
F α
p;q�u; v;wo� � Fff α

p;q�x; y;wo�g and for their kinoforms
K m;n�u; v;wo� � Ffkm;n�x; y;wo�g and K α

p;q�u; v;wo� �
Ffkαp;q�x; y;wo�g. The quality of the approximated version
of the desired HG beam, obtained at the Fourier domain of
the KPE, is evaluated by means of the RMS deviation

RMS �
�
S−1

Z
D
jFm;n − γ · K m;nj2dS

�
1∕2

; (15)

where D is the integration domain, with area S, and γ is a con-
stant that allows the best fitting between the field Fm;n and the
field K m;n produced by the kinoform. The integration domain
D is a rectangular pupil that is established with the same cri-
terion that the initial pupil in the KPE plane, i.e., the decay of
the desired field is 1/100 of its peak value at the edges of the
domain D. In Eq. (15), the beams Fm;n and K m;n are, respec-
tively, replaced by Fα

p;q and K α
p;q when the desired field is the IG

beam, and the domain D is replaced by an elliptical pupil.
In the third paragraph of this section we described the

method to establish the initial KPE pupil dimensions (ao and
bo). In this process we found four reference lines (dotted trace
in Fig. 1) whose intersections define an additional rectangular
area (of dimensions a 0o and b 0o), which is inside the field domain.
In the considered cases we have found that the optimum KPE
pupil dimensions are in the ranges [a 0o, ao] (horizontal) and
[b 0o, bo] (vertical). Therefore, the optimal pupil dimensions
are obtained in the rectangular domain that have two corners
at the points [a 0o, b 0o] and [ao, bo] (Fig. 2). The trial pupil di-
mensions are assigned as the points (ai, bj) that form a lattice,
with lateral resolution δx , in this rectangular set. The lattice
resolution δx is adopted as the pitch length of the employed
SLM which is equal to 8 μm. The optimal KPE dimensions
are given by the trial pupil dimensions that provide the
minimum RMS value.

In the example of Fig. 1, the small and large initial pupils [of
dimensions (a 0o, b 0o) and (ao, bo), respectively] correspond to the
squares formed with dotted and dashed traces, respectively,
while the optimized pupil is drawn with a solid trace. A feature
of this simple algorithm is that the number of trial points to be
tested is relatively small. For example, in the case of the HG

(a) (b)

Fig. 1. (a) Modulus and (b) phase of the HG beam f 4;4. The initial
and optimized pupils for the KPE are depicted in dashed trace and
solid trace, respectively.

Fig. 2. Rectangular domain for the searching of optimal pupil
dimensions. The trial points (ai , bj) form a lattice, with lateral reso-
lution δx.
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beam in Fig. 1, for a waist wo � 512 μm, the number of
required trial points was 64 × 64.

In Table 1 we show the RMS values for several KPEs of HG
beams, with optimized pupils. We observe that the RMS
increases if any of the beam indices increases, while the other
index is fixed. All RMS values, for the considered cases, are
smaller than 0.06. We do not include the RMS values below
the diagonal in this table because f m;n is a rotated version of
f n;m. Table 2 shows the values of the optimized RMS for sev-
eral KPEs of even [part (a)] and odd [part (b)] IG beams. In this
case, when m � n the RMS increases with the beam order, and
the RMS values are smaller than 0.0935.

The orthogonal series for the KPE [Eq. (3)], which corre-
sponds to the HG mode f m;n, contains the HG modes f p;q
with weighting factor Ap;q. Thus, the KPE efficiency in the
generation of the HG mode f p;q is given by

ηp;q �
jAp;qj2

RR∞
−∞ jf p;qj2dSRR

∞
−∞ jkm;nj2dS

: (16)

The efficiencies that correspond to the KPEs of IG modes,
denoted as ηαp;q are obtained replacing [in Eq. (16)] Ap;q, f p;q ,
and km;n by the coefficients and functions corresponding to the
IG modes. In Fig. 3(a) we depict efficiency values η4;n, for
several orders n, which correspond to the KPE of the HG beam

f 4;4. As expected, the highest efficiency value is η4;4. In
Fig. 3(b) we depict efficiency values ηom;5, for several orders
m, which correspond to the KPE ko9;5. In this case, the highest
efficiency value is ηo9;5. In the considered cases, the efficiency for
the encoded mode is at least two orders of magnitude larger
than the efficiencies for the remaining modes.

In Tables 3 and 4 we show the efficiencies ηm;n and ηαm;n,
corresponding to the encoded modes, for several KPEs km;n
and kαm;n. It is found that such efficiencies tend to reduce when
any of the indices increases (maintaining the other index fixed).
This tendency indicates that the dominance of the encoded
mode for each KPE reduces with the increment of the indices.
Since the reduction in the dominance of the encoded mode,
which corresponds to a lower weighting factor, makes this
mode more sensible to the noise originated in the remaining
modes, this result also explains the increment of the RMS
(Tables 1 and 2) when the indices increase.

4. EXPERIMENTAL GENERATION OF THE
BEAMS

The experimental setup we employed to generate Hermite–
Gauss and Ince–Gauss beams is depicted in Fig. 4. An ex-
panded and collimated He–Ne laser beam (LB) is employed

Table 1. RMS for Different HG Beams Generated with Their KPEs

n

m 0 1 2 3 4 5 6

0 0.0161 0.0183 0.0261 0.0329 0.0345 0.0388 0.0425
1 0.0213 0.0289 0.0363 0.0378 0.0425 0.0463
2 0.0346 0.0403 0.0416 0.0454 0.0487
3 0.0449 0.0455 0.0487 0.0514
4 0.0462 0.0490 0.0515
5 0.0514 0.0535
6 0.0552

Table 2. RMS for (a) Even and (b) Odd IG Beams Generated with Their KPEs

(a)

n

m 0 1 2 3 4 5 6

0 0.0136
1 0.0198
2 0.0323 0.0320
3 0.0458 0.0408
4 0.0629 0.0403 0.0428
5 0.0672 0.0413 0.0510
6 0.0783 0.0345 0.0351 0.0546

(b)

n

m 1 2 3 4 5 6

1 0.0199
2 0.0314
3 0.0433 0.0366
4 0.0747 0.0446
5 0.0805 0.0615 0.0459
6 0.0935 0.0525 0.0497
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to illuminate a circular pupil (P). A double Fourier transform
array, formed by a couple of lenses (L1, L2) of equal focal
lengths f, projects an image of the pupil into the plane of a
phase spatial light modulator (SLM). We avoid the use of a
single-lens image projector that would introduce a quadratic
phase modulation. This projected image pupil is intended to
cover the aperture of the displayed KPE. The SLM is aligned
to reflect the incoming light in a new axis that forms an angle θ
with the incoming axis. The employed phase SLM is a reflective
device (HOLOEYE Photonics AG), with a transverse resolu-
tion of 8 μm and a dynamical range of 2π radians. The
KPEs, which are encoded in the SLM, are Fourier transformed
by lens L3. The intensities of such Fourier spectra are recorded
by a CCD. In order to avoid unmodulated reflected light in the
KPE Fourier domain, its transmittance is multiplied by two
different blazed gratings, one inside the pupil area and the other
in the remaining area.

In Figs. 5(a)–5(d) we show the numerically generated inten-
sities of the Fourier transform of f 4;4, k4;4, f

e
6;6, and ke6;6, re-

spectively. The computed phases of these fields and
corresponding KPEs are depicted in Figs. 5(e)–5(h). The phase
in Fig. 5(h) presents incorrect variations at the edge of the cir-
cular domain. However, such errors are not very significant
since they appear at sections of the field [see Fig. 5(d)] with
low amplitude.

We implemented experimentally KPEs for HG and IG
beams with different indices (m, n). Figures 6, 7, and 8 show
results that correspond to the cases of HG, even IG, and odd IG
beams, respectively. Each one of these figures includes theoreti-
cal beam intensities that correspond to the images in the first
column. The intensities of beams generated by the KPEs are
displayed in the second column (numerical simulations) and
third column (experimental results). We point out that the con-
sidered fields are expressed by real type functions. Therefore,
the phases of these fields have only two values: 0 for the positive
sections of the fields and π for the negative parts. Such binary
phases have been illustrated in Figs. 1 and 5. The KPEs for HG
beams corresponds to indices (m � 4, n) for n � 0; 1;…4.
The beam waist in this case was wo � 512 μm. In the cases
corresponding to IG beams, the employed beam waist is
wo � 256 μm, and the beam indices adopt a variety of values
that are shown in Figs. 7 and 8.

Results in Figs. 6, 7, and 8 show that the intensities of beams
generated by KPEs present marginal errors with respect to the
theoretical results [column (a) in each case]. Such errors have
been evaluated by the RMS values computed in Section 3. In all
cases, experimental [column (c)] and numerical [column (b)]
results are quite similar.

5. DISCUSSION AND FINAL REMARKS

Now we briefly discuss why the desired field is visible in the
Fourier domain of the KPEs. It was proved in Section 2 that
the KPEs of the desired HG or IG modes are the phase DOEs
whose orthogonal series contain these fields with the maximum
possible weighting factor. In Sections 3 and 4 we have demon-
strated, by means of numerical simulations and experimentally,
that approximate versions of the HG and IG beams can be gen-
erated at the Fourier domain of their KPEs. To understand this
result, we will focus our attention to the case of a HG beam.
Nevertheless, the arguments employed in this case can be
extended to the case of IG beams.

First of all, we note that the orthogonal series in Eq. (3), for
the KPE transmittance, can be expressed as

(a)

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

O rder ( ,n )

4,
n

4

(b)

0 1 3 5 7 9 11 13 15 17 19 21
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Order (m,5

o m
, 5

)

Fig. 3. Efficiencies (a) η4;n and (b) ηom;5 in the generation of different
modes (f 4;n and f o

m;5) through the KPEs k4;4 and ko9;5, respectively.

Table 3. Efficiencies ηm;n in the Generation of Modes f m;n Employing the KPEs km;n for Different Indices (n, m)

n

m 0 1 2 3 4 5 6

0 0.7751 0.7521 0.7369 0.7321 0.7243 0.7222 0.7167
1 0.7297 0.7150 0.7104 0.7027 0.7007 0.6953
2 0.7005 0.6960 0.6885 0.6866 0.6813
3 0.6915 0.6841 0.6822 0.6769
4 0.6767 0.6748 0.6696
5 0.6729 0.6677
6 0.6626
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km;n�x; y;wo� � Am;nf m;n�x; y;wo� � dm;n�x; y;wo�; (17)

dm;n�x; y;wo� �
X∞

�p;q�≠�m;n�
Ap;qf p;q�x; y;wo�: (18)

In Eq. (17), the KPE transmittance is formed by the desired
term (with coefficient Am;n) and the “difference” term
dm;n�x; y;wo�, which according to Eq. (18) contains all the
HG modes with combined indices different than �m; n�, which
are orthogonal to f m;n�x; y;wo�. As proved in Section 2, the
first term in Eq. (17) is dominant. However, such a term that
corresponds to the desired field is not visible at the KPE plane,
whose intensity is uniform within its limiting pupil.

An interesting result is that the Fourier transform of
the HG beam [Eq. (1)] is given, omitting a constant factor,
by �−i�p�qf p;q�u; v;w 0

o� [11], where �u; v� are frequency coor-
dinates in the Fourier domain and w 0

o � �πwo�−1. Considering
this result, the Fourier transform of the KPE is expressed as

K m;n�u; v;wo� � �−i�m�nAm;nf m;n�u; v;w 0
o� � D�u; v;w 0

o�;
(19a)

D�u; v;w 0
o� �

X∞
�p;q�≠�m;n�

�−i�p�qAp;qf p;q�u; v;w 0
o�: (19b)

It is noteworthy in Eq. (19) that the Fourier transform of the
kinoform is a series of orthogonal HG modes, similar to that in
Eq. (3), except for the phase factor �−i�p�q that modulates the
�p; q�-order mode. In Eq. (19a), the �m; n�-term is still dom-
inant with respect to the other terms that appear in the function
D�u; v;w 0

o�. However, the HG modes in D�u; v;w 0
o�, which are

modulated by the discrete phase factor �−i�p�q and periodic in
the power p� q, are now superposed in a destructive form,
opening the possibility of making visible the dominant term.

As an additional argument to understand how the desired
HG beam can be generated employing its KPE, we note that
the KPE transmittance [Eq. (2)] presents acute dislocations at
each position where the sign of f m;n�x; y;wo� is inverted and at
the edges of the limiting pupil rect�x∕a; y∕b�, where the KPE
abruptly becomes null. On the other hand, we note that the
first right-side term in Eq. (17) is a continuous and derivable

Table 4. Efficiencies ηαm;n for Different AllowedOrders of (a) Even and (b) Odd IG BeamsGenerated Through the KPE k α
m;n

(a)

n

m 0 1 2 3 4 5 6

0 0.7927
1 0.7388
2 0.7016 0.7259
3 0.7181 0.7034
4 0.6158 0.7061 0.6857
5 0.6595 0.6665 0.6605
6 0.5579 0.7049 0.6640 0.6391

(b)

n

m 1 2 3 4 5 6

1 0.7463
2 0.6973
3 0.6644 0.6879
4 0.6544 0.6768
5 0.5848 0.6648 0.6602
6 0.6144 0.6649 0.6418

Fig. 4. Experimental setup to generate HG and IG beams. The
KPE is codified on the SLM and a CCD camera is placed at the
Fourier plane of lens L3.

Fig. 5. Intensities of the Fourier spectra (a) F 4;4, (b) K 4;4, (c) Fe
6;6,

and (d) K e
6;6. The corresponding phases are displayed, respectively, in

the bottom images [(e), (f ), (g), and (h)].
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function. Therefore, each one of the KPE dislocations must
correspond to a dislocation in the field dm;n�x; y;wo�.
Because of such dislocations, it is expected that the Fourier
spectrum of dm;n�x; y;wo� will appear distributed in a domain
much larger than the domain of Fm;n�u; v;wo�, which makes
this field visible in the KPE Fourier domain.

To illustrate the preceding assertions, let us consider that the
desired HG beam is f 2;2�x; y;wo�. The horizontal transverse
profile for the KPE of this beam, with an optimized pupil,
is shown (solid trace) in Fig. 9(a). Such a transverse profile
is taken along an axis that includes the beam peak intensity.
The transverse profiles of the computed fields A2;2f 2;2�x; y;wo�
(dashed trace) and d 2;2�x; y;wo� (dotted trace) are also dis-
played in Fig. 9(a). As expected, each dislocation in the
KPE corresponds to a dislocation in d 2;2�x; y;wo�. On the other
hand, in Fig. 9(b) we show the horizontal transverse profiles of

the KPE Fourier spectrum (for this example) and for their two
components, which appear at the right side of Eq. (19a). These
transverse profiles are also chosen in order to include the peak
amplitude of the KPE Fourier spectrum. It is noted that the
KPE Fourier spectrum (solid trace) is quite similar to the spec-
trum of the desired mode (dashed trace), within the field do-
main. In addition, it is noteworthy that the Fourier spectrum of
the difference term (dotted trace) is extended in a domain
which is relatively larger than the domain of the desired field.
Far from the origin, where the desired mode field is approxi-
mately zero, the KPE and difference fields are coincident. In
Fig. 10 we show similar results at the Fourier domain of
KPEs for the HG modes f 3;3�x; y;wo� and f 4;4�x; y;wo�.

The generation of HG and IG beams can be performed by
means of resonant cavities [12,13] and by the use of synthetic
phase holograms that have the capability of generating arbitrary

Fig. 6. Column (a) shows the intensities of HG beams Fourier spec-
tra Fn;m for several indices (n, m). The intensities of the Fourier spectra
of the corresponding KPEs are displayed in column (b) numerical and
column (c) experimental.

Fig. 7. Theoretical intensities of IG beams Fourier spectra Fe
n;m for

several indices (n, m) are shown in column (a). Numerical and exper-
imental intensities of the Fourier spectra of the corresponding KPEs
are displayed in column (b) and column (c), respectively.
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complex fields [8,14,15]. The analysis and comparison of these
techniques with our simple method presented here are beyond
the scope of the present report.

Summarizing, we have discussed the optical generation
of Hermite–Gauss and Ince–Gauss beams employing KPEs.
It is noteworthy that approximated versions of the desired
beams appear at the Fourier domain of the KPEs. When an
appropriate pupil size is employed, the method synthesizes
HG and IG beams with relatively high accuracy and high
efficiency. Indeed, it has been proved that, in the context of
the employed approach, the KPEs are the phase elements that
generate the desired beams with the maximum possible effi-
ciency. For the discussed KPEs, intended to generate a variety
of HG and IG beams, the computed efficiencies are in the
range of 0.55 and 0.79, whereas the RMS values are in the
range of 0.013 and 0.094. A comparison of the experimental
and numerical results with the theory shows a remarkable
agreement.

Funding. CONACYT (322012, 367016).
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