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Abstract

We present a two-dimensional array of nearest-neighbor coupled waveguides that is the opti-

cal analog of a quantum optomechanical system. We show that the quantum model predicts the

appearance of effective column isolation, diagonal-coupling and other non-trivial couplings in the

two-dimensional photonic lattice under a standard approximation from ion-trap cavity electrody-

namics. We provide an approximate impulse function for the case of effective column isolation and

compare it with exact numerical propagation in the photonic lattice.
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I. INTRODUCTION

Optical analogs of quantum processes [1, 2] may become a valuable resource for the

design of integrated optics devices [3, 4]. In this spirit, a zoo of optical analogs to quantum

mechanical systems and the algebraic methods to solve them provide a valuable toolbox for

optical designers. Here we want to show that a quantum analogy may be helpful in the design

of optical integrated circuits even when it fails to provide a closed-form analytic impulse

function for its optical simulator. For this reason, we will consider the two-dimensional

array of couple photonic waveguides described by the differential set

− i∂zEj,k = (δk + ωmj) Ej,k +

kg
(√

j + 1Ej+1,k +
√
jEj−1,k

)
+

d
(√

k + 1Ej,k+1 +
√
kEj,k−1

)
. (1)

This photonic lattice is a two-dimensional semi-infinite array of waveguides, where the effec-

tive refractive index depends from both horizontal and vertical positions in the array, and

the couplings between nearest-neighbor waveguides go as the square root of their horizontal

or vertical position. It can be seen as a two-dimensional realization of a Glauber-Fock oscil-

lator lattice [5] with some modifications. It is straightforward to show that this differential

set can be cast into a Schrödinger equation, i∂t|ψ〉 = Ĥ|ψ〉, with effective Hamiltonian,

Ĥ = δâ†â+ ωmb̂
†b̂+ gâ†â

(
b̂† + b̂

)
+ d

(
â† + â

)
, (2)

once we propose the variable change z = −t and a wavefunction decomposition |ψ〉 =∑
n,m Em,n|m〉b|n〉a where the state |p〉q is the pth Fock state of the q oscillator, and the field

at the (j, k)th waveguide is Ej,k with j, k = 0, 1, 2, . . . and E−|j|,−|k| = 0. The Hamiltonian in

(2) describes an optomechanical model composed by a driven cavity coupled to a mechanical

oscillator [6]. Here, the detunning between the cavity field mode described by the creation

(annihilation) operators, â† (â), and the pump field frequencies is given by δ = ωf − ωp, the

frequency of the mechanical oscillator described by the creation (annihilation) operators, b̂†

(b̂) is ωm, and the parameters d and g are the strenght of the pump field and the linear

coupling between the field and the mechanical oscillator, respectively. Up to our knowledge,

it is not possible to provide a closed form analytic result for these equivalent models but

some approximations can be made in the quantum model. We will use this insight to predict

the behavior of classical light propagating in the photonic lattices.
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II. AN ALGEBRAIC APPROACH TO GLAUBER-FOCK OSCILLATORS.

The trivial case corresponds to the absence of driving in the optomechanical model, d = 0,

Ĥ = ωmb̂
†b̂+ gâ†â

(
b̂† + b̂

)
, (3)

which has been shown to produce non-classical light states [7, 8], and its optical analogue is

a one-dimensional Glauber-Fock oscillator lattice [5],

− i∂zEj,n = ωmjEj,n + ng
(√

j + 1Ej+1,n +
√
jEj−1,n

)
.

(4)

It is straightforward to diagonalize (3) via the coherent displacement D̂(gâ†â/ωm) =

egâ
†â(b̂†−b̂)/ωm [9, 10], such that in diagonal form the effective Hamiltonian is given by

ĤD = D̂(gâ†â/ωm)ĤD̂(−gâ†â/ωm), (5)

= ωmb̂
†b̂− g2

ωm

(
â†â
)2
, (6)

and leads to a spectrum for the photonic lattice in the form:

Ωj = ωmj −
(gn)2

ωm
. (7)

The impulse function giving the field amplitude at the pth waveguide given that the initial

field was located at the qth waveguide is

Ip,q(z) =
∑
j

〈p|D̂
(
− gn
ωm

)
|j〉〈j|D̂

(
gn

ωm

)
|q〉eiΩjz, (8)

and we can recover the terms given by

〈j|D̂(β)|k〉 = e−
|β|2
2

√
k!

j!
βj−kL

(j−k)
k

(
|β|2
)
, (9)

= e−
|β|2
2

√
j!

k!
(−β)k−jL

(k−j)
j

(
|β|2
)
, (10)

via reference [11] where Lβn(x) stands for the generalized Laguerre polynomials [12]. It

have been shown that the Glauber-Fock oscillator is equivalent to a harmonic oscillator of

constant mass and frequency where, for a fixed effective refractive index, the only way to

change the oscillator frequency is the inclusion of second-neighbor couplings [13]. Thus, in

our case a single-waveguide input will produce coherent oscillations and its spatial frequency

will remain the same for a fixed effective refractive index, ωm, and variable coupling, ng, as

shown in Fig. 1.
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FIG. 1. Evolution of the field intensity for an initial field impinging the (a)tenth and (b)thirtieth

waveguide of a photonic lattice composed of 200 waveguides and described by Eq.(4) with parameter

set equal to (a) ng = 0.5 ωm and (b) ng = ωm.

III. THE TWO-DIMENSIONAL WAVEGUIDE LATTICE.

So, we may expect some kind of oscillation in the two-dimensional model. In order to

gain some intuition let us cast the action of the coherent displacement defined before over

the full Hamiltonian (2) [9, 10],

ĤD = δâ†â− g2

ωm

(
â†â
)2

+ ωmb̂
†b̂+

d
[
â†e

g
ωm

(b̂†−b̂) + âe−
g
ωm

(b̂†−b̂)
]
. (11)
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At this point, we can use the time-dependent rotation Û0(t) = e−it(δâ
†â+ωmb̂†b̂) and the new

formulation of the Schrödinger equation has an effective Hamiltonian given by

ĤU = − g2

ωm

(
â†â
)2

+ d
[
â†eiδteβ(b̂

†eiωt−b̂†e−iωt)+

âe−iδte−β(b̂
†eiωt−b̂†e−iωt)

]
, (12)

= − g2

ωm

(
â†â
)2

+ d
[
â†eiδtD

(
βeiωt

)
+

âe−iδtD
(
−βeiωt

)]
, (13)

with β = g/ωm. The second term of this Hamiltonian is equivalent to that of a trapped-ion

setup [14] and, as long as d � ωm, we can use the approach used in ion-trap quantum

electrodynamics to approximate it to different types of coupling by setting the pump-cavity

field detunning to δ = lωm with l = 0,±1,±2, . . . For positive values of l, we obtain

ĤU+ ≈ −
g2

ωm

(
â†â
)2

+

de−
|β|2
2

â†
(
b̂†b̂
)

!(
b̂†b̂+ l

)
!
L

(l)

b̂†b̂

(
β2
) (
−βb̂

)l
+

â
(
−βb̂†

)l (
b̂†b̂
)

!(
b̂†b̂+ l

)
!
L

(l)

b̂†b̂

(
β2
) ,

(14)

and, as far as we know, it is not possible to create an optical analog involving photonic

lattices for negative values of l. Then, under the condition d� ωm, if we choose the lattice

to show δ = 0, the horizontal and vertical modes of the lattice should remain effectively

uncoupled, as strange as it may sound. If we choose a paremeter value δ = ωm, then we

have:

ĤU+ ≈
g2

ωm

(
â†â
)2 − dβe− |β|

2

2

(
âb̂† + â†b̂

)
, (15)

which tells us that horizontal and vertical modes interact such that Ej,k will effectively couple

to Ej∓1,k±1. If we choose a δ = 2ωm, then the effective Hamiltonian is

ĤU+ ≈
g2

ωm

(
â†â
)2 − dβe− |β|

2

2

(
âb̂†2 + â†b̂2

)
, (16)

and the nearest-neighbor coupling lattice will behave as if second nearest diagonal neigh-

bors were coupled; i.e., Ej,k will effectively couple to Ej∓1,k±2. Figure 2 shows a diagram
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FIG. 2. A schematic showing the (a) nearest-neighbor couplings in the optical lattice described

by (1) and the effective couplings derived from the quantum analog for parameters d � ωm and

δ = lωm with (b) l = 0, (c) l = 1 and (d) l = 2.

exemplifying these cases. Note that by choosing g � ωm and staying close to the first

waveguides we could neglect the importance of the quadratic term
(
â†â
)2

and that experi-

mental considerations should be taken into account for the definition of the parameter ranges

as stronger couplings for waveguides far from the zeroth waveguide will induce second- and

higher-neighbor couplings.

If we were able to diagonalize ĤU , then the impulse function giving the field amplitude

at the (p, q)th waveguide for an input at the (r, s)th waveguide would be given by

I(p,q),(r,s) =
∞∑
j=0

eiz(δp+ωmj)〈q|D
(
− gp
ωm

)
|j〉 ×

〈p, j|eizĤUD
(
gr

ωm

)
|r, s〉. (17)

As we mentioned before, we are not able to do so but we can provide certain approximations.

For example, the quantum optomechanical model tells us that if we consider δ = 0 then

the effective Hamiltonian does not involve any term with the form
(
â† + â

)
that relates to

coupling between horizontal waveguides in the photonic lattice. Then, we can argue that

we will effectively have a series of vertical Glauber-Fock oscillators which do not see each

other. This is confirmed by the approximate impulse function,

I(p,q),(r,s) ≈


0, p 6= r,

e
iz

(
δp− g

2p2

ωm

)∑∞
j=0 e

izωmj×
〈q|D

(
− gp
ωm

)
|j〉〈j|D

(
gp
ωm

)
|p〉, p = r.

(18)

This impulse function is just the impulse function of a Glauber-Fock oscillator in (8) times

a phase factor. We already know from the harmonic oscillator analog [13] and Fig. 1 that
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the oscillation frequency between different single-waveguide inputs is the same. Thus, if we

introduce a horizontal light line, the propagating field in each and every excited waveguide

should oscillate and come back to the original state almost at the same time. Figure 3

shows the numerical propagation in a finite lattice composed by ten thousand waveguides in

a 100×100 array described by (1). The lattice size is adequate to keep the propagating field

away from the end boundary and the parameters are chosen to fulfill δ = 0, d = g = 0.01 ωm.

(a)

(b) (c)

(e)

(f) (g)
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FIG. 3. (a) The fidelity of the propagating field with respect to the input field. Numerical

propagation of the field intensity at the two-dimensional lattice described by Eq.(1) with parameter

set {δ, g, d} = {0, 0.01, 0.01}ωm at distances (b) z = 0, (c) z = π/2, (d) z = π, (e) z = 3π/2, (f)

z = 2π, (g) z = 4π.
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FIG. 4. (a) The fidelity of the propagating field with respect to the input field. Numerical

propagation of the field intensity at the two-dimensional lattice described by Eq.(1) with parameter

set {δ, g, d} = {0, 0.01, 0.01}ωm at distances (b) z = 0, (c) z = 2π.

The initial field distribution Ej,k = δj,10 e
−|α|2/2αk(k!)−1/2 corresponds to a quantum analog

where the mechanical oscillator is in the tenth Fock state and the field oscillator in a coherent

state, |10, α〉, with coherent parameter α =
√

10. Figure 3(a) shows the fidelity between the

original input field and the propagating field, F(z) = |E(0)·E(z)|, where the field amplitudes

vector is defined as E = {E0,0, E0,1, . . . , E1,0, E1,1, . . .}. We can see that the field performs a

periodical oscillation as expected from the approximate impulse function. Figures 3(b) to

Fig. 3(g) show the field intensity in the two-dimensional lattice at positions z = 0, Fig.

3(b), z = π/2, Fig. 3(c), z = π, Fig. 3(d), z = 3π/2, Fig. 3(e), z = 2π, Fig. 3(f), and

z = 4π, Fig. 3(g). Of course, this is only an approximation and the effective isolation

between waveguide columns is not perfect as Fig. 4 shows for an initial field distribution

Ej,k = δk,10e
−|α|2/2αj(j!)−1/2 that corresponds to the mechanical oscillator in a coherent state

and the field in a Fock state, |α, 10〉 with coherent parameter α =
√

10, and looks like a

vertical light line.
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IV. CONCLUSIONS

In summary, we have shown that analogies between optical and quantum systems may

help the optical designer even in those cases where an exact solution cannot be procured.

We chose as an example a two-dimensional array of waveguides that is the optical analog of a

quantum optomechanical system. First, we show that the closed quantum model is related to

the one-dimensional Glauber-Fock oscillator and calculate its spectra and impulse function

using an algebraic approach that some may find simpler than the Bargmann formalism used

in the literature. Then, we move to the driven quantum model and bring forward a method

used in trapped-ion cavity quantum electrodynamics to approximate the dynamics in a

given regime. Such an approach leads us to approximate dynamics where different effective

couplings between waveguides appear; e.g., uncoupling between columns or effective diagonal

coupling. We chose to work with the case where waveguide columns do not effectively

couple, which means that each and every column of the array behaves as an independent

Glauber-Fock oscillator. We provide an approximate impulse function and a numerical exact

propagation in the original two-dimensional lattice that supports our prediction.
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