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We propose an improved technique for generating the perfect optical vortex. This technique is notable for the
simplicity of its practical realization and high quality of the results. The efficiency of the proposed technique is
illustrated with the results of physical experiments and an example of its application in optical trapping of small
particles. © 2014 Optical Society of America
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As is well known, an optical vortex beam possesses a
helical wavefront able to transfer orbital angular momen-
tum to dielectric particles at a rate proportional to its
topological charge. Thus such a beam is a very effective
tool in many applications related to optical trapping and
manipulation [1]. Several techniques for generating the
optical vortex beam have been reported during last de-
cade [2–12], but all of them exhibit a strong dependence
of the vortex radius on the topological charge, making it
difficult to obtain a high spatial accuracy and a high
orbital angular momentum simultaneously. Recently, we
reported a new type of optical vortex, called perfect vor-
tex [13], whose radius is independent of topological
charge and whose intensity gradient takes an extremely
large value. This concept is today widely recognized by
the optics community [14–25]. It was demonstrated that
the perfect vortex can be approximately generated in a
Fourier transforming optical system with a computer-
controlled liquid-crystal (LC) spatial light modulator
(SLM) working in the phase mode. Unfortunately, the
original technique was very cumbersome in its practical
realization because of the complex modulation of the
transmission mode of the SLM used, namely a twisted
nematic LC-SLM. In consequence, the quality of the gen-
erated vortex was rather poor. Here we propose an
improved technique for generating the perfect optical
vortex which is notable for the simplicity of its practical
realization and the high quality of its results. The effi-
ciency of the proposed technique is illustrated with the
results of physical experiments and an example of its
application in optical trapping of small particles.
We start recalling the definition of the perfect vortex

as an optical beam with the transverse distribution of
complex amplitude given by the ideal model

gν�ρ; θ� ≡ δ�ρ − ρ0� exp�iνθ�; (1)

where δ�ρ� is the Dirac δ-function, �ρ; θ� are the polar
coordinates in the beam cross section, ρ0 is the radius
of the vortex, and ν is an integer, known as the topo-
logical charge of the vortex. Such a vortex can be
approximately generated by means of the Fourier trans-
forming optical system. As is well known, the complex
amplitude distributions in the back �ρ; θ� and front

�r;φ� focal planes of this system are related by the
Fourier transform [26], i.e.,
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where λ is the wavelength of illumination and f is the
focal length of the Fourier transforming lens. Then,
replacing U�ρ; θ� in the inverse version of Eq. (2) by
gν�ρ; θ� from Eq. (1) and using the sifting property of
δ-function together with the integral representation of
the nth-order Bessel function of the first kind [27],
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one readily finds that, to obtain the perfect vortex, the
input optical signal must be chosen in accordance with

U�r;φ� ∝ Jν

�
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�
exp�iνφ�: (4)

The optical signal, Eq. (4), can be obtained by means of
two SLMs that modify the amplitude and the phase of il-
lumination field, respectively. In order to use only one
phase modulator, we admit the width-pulse approxima-
tion of Bessel function in Eq. (4) shown in Fig. 1 for pos-
itive value of ν and described by
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where rect�r� is the rectangle function, rν;n is the nth root
of equation

d
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and

Δrν;n ∝
jJν�2πrν;nρ0∕λf �j
Jν�2πrν;1ρ0∕λf �

: (7)

Then, the field given by Eq. (4) can be approximately
reproduced transmitting the uniform plane wave through
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a phase screen formed by a set of concentric rings with
the total amplitude transmittance
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which are separated by a set of complementary concen-
tric rings with the total amplitude transmittance
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In Eq. (8) φν;n takes value 0 for odd n and π∕ν for even n.
The phase factors exp��i2πx00x∕λf � in Eqs. (8) and (9)
are introduced to separate the result of useful modula-
tion from the parasite light passed through the spaces
between modulating rings, so that the generated vortex
will be centered at the off axis position �x0 � −x00; y

0 � 0�.
Since the modulation of the optical signal specified by
Eqs. (8) and (9) has unity modulus in all the points, it
can be effectively realized by means of a commercial
computer controlled LC-SLM operating in phase-only
modulation mode.
Using Eqs. (2)–(8), one finds the signal centered at the

point �x0 � −x00; y
0 � 0� of the output plane of the Fourier

transforming optical system
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It is not out of place to mention here that the nega-
tive value of the topological charge ν in Eq. (10) can
be obtained by simple inverting the sign of the phase
in Eq. (8).
Taking into account that the exponential factor in

Eq. (10) exactly reproduces the required helical wave-
front, we computed only the intensity distribution
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where N is a truncating parameter. The results of com-
putation for ρ0 � 1 mm,N � 20, and two different values
of ν (1 and 10) are shown in Fig. 2 (for the sake of sim-
plicity, in both cases the factor 2π∕λf was set equal to
unity). These results can be recognized as a rather good
approximation of the perfect vortices. As a whole, the

results of the computation demonstrate the consistence
of the approximation given by Eq. (5).

To verify the proposed technique in practice, we real-
ized two physical experiments using the setup shown in
Fig. 3. In these experiments we employed the computer-
controlled phase-only reflective LC-SLM Pluto-Vis from
HoloEye Photonics AG with 1920 × 1080 pixel resolution
and 8.0 μmpixel pitch. The control video signals were gen-
erated using Matlab routines and displayed onto the LC
panel with an accuracy of 256 gray levels. As the light
source we used a low power He–Ne laser (633 nm). To
register the results, we employed a CCD camera.

In the first experiment we displayed onto the LC-SLM
the control video signals of the form exp�iνφ�with differ-
ent values of ν and registered the superposition of the
modulated light with an inclined plane wave from the
same laser source. The control video signals and regis-
tered interference patterns are shown in Fig 4. The fork
structure of the interference fringes in Fig. 4(b), with the
difference in the number of fringes in the bottom and
the top of the interference patterns equal to ν, testifies
evidently to the presence of optical vortex. This result
ensures the accuracy in the following experiments where
we deal only with the intensity measurements.

In the second experiment we generated the control
video signals in accordance with Eqs. (8) and (9) to cre-
ate the perfect vortices of radius ρ0 � 1.5 mm and differ-
ent values of topological charge. To display effectively
the control signals onto the active area of the LC-SLM, we
truncated the number of modulating rings by number N
depending on the value of topological charge. An exam-
ple of generated control video signal corresponding to
ν � 10 and N � 20 is depicted in Fig. 5. The intensity dis-
tributions of the generated vortices shown in Fig. 6
exhibit a sharp intensity profile with the radius indepen-
dent of the topological charge. The discernible increase
of the principal ring width and of the parasite ring’s

Fig. 1. Width-pulse approximation (solid curve) of Bessel
function (dotted curve).

Fig. 2. Intensity distribution computed in accordance with
Eq. (11): (a) ν � 1 and (b) ν � 10.

Fig. 3. Experimental setup used for generating the perfect
vortex: BE, beam expander; HWP, half-wave plate; BS, beam
splitter; and L, lens; M, mirror.
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visibility can be explained by the systematic error
because of the accepted width-pulse approximation of
Bessel function. It is obvious that the minimum attainable
size of the generated vortex is limited by the effective
width of the principal vortex ring which was about
0.18 mm in the case of Fig. 6(d).
To illustrate the possible applications of the proposed

technique, we have realized one more experiment in
which the generated perfect optical vortex with a radius

of 0.3 mm and topological charge of 15 was employed for
trapping silica particles of 2.5 μm diameter suspended in
water. The optical setup used in this experiment is shown
in Fig. 7. It consists of two parts: the first one is the same
as shown in Fig. 3; the second one is a typical optical
tweezers setup. The test specimen with silica particles
was placed in the focal plane of the microscope objective
with 1.4 N.A. and 100× magnification which projects
the white light source onto the CCD camera through
the dichroic mirror and neutral filter. To provide the re-
liable interaction between generated vortex and silica
particles, in this experiment we used a high power (1 W)
DPSS laser (532 nm). The time evolution of the trapping
process using the perfect vortex is shown in Fig. 8. As can
be seen in this figure, the exposed silica particles appear
to be stably trapped at the vortex edge after three mi-
nutes. Moreover, they rotate about the vortex center with
the velocity proportional to the topological charge.

Fig. 5. Example of the control video signal for ρ0 � 1 mm,
ν � 10 and N � 20 (for better clearness the spatial carrier is
omitted).

Fig. 6. Generated vortices with radius ρ0 � 1.5 mm and topo-
logical charge: (a) ν � 1; (b) ν � 20; (c) ν � 40; and (d) ν � 60.

Fig. 7. Optical trapping setup: WLS, white light source; TS,
test specimen; MO, microscope objective; DM, dichroic mirror;
and NF, neutral filter.

Fig. 8. Temporal sequence of optical trapping silica particles
using the perfect vortex generated by means of the proposed
technique.

Fig. 4. (a) Control video signals and (b) registered interfer-
ence patterns in the first experiment for values ν � 1, ν � 3,
and ν � 5.
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In conclusion, an improved technique for generating
the perfect vortex based on the width-pulse approxima-
tion of Bessel function is proposed. Comparing this tech-
nique with the one reported in our previous publication
[13], we find that it is notable for the simplicity of its prac-
tical realization and high quality of the provided results.
We consider that this technique can be widely adopted in
optical trapping and manipulation of small particles.
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