
Splitting after collision of high-order bright 
spatial solitons in Kerr media 

M. D. Iturbe Castillo,1,* S. Chavez Cerda,1 and D. Ramirez Martinez2 
1Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro # 1, 72840 Tonantzintla, Puebla, Mexico 

2Benemerita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Puebla, Mexico 
*diturbe@inaoep.mx 

Abstract: By numerically studying the collision between (1 + 1)-
Dimensional high order bright spatial solitons in a Kerr nonlinear media we 
show that after the collision, the high order solitons split into a number of 
first order solitons that corresponds to its order. Two different collision 
scenarios are considered: collision between two independent high order 
solitons and a collision with a virtual soliton simulated by the reflection at 
an angle of a high order soliton at a linear interface. The results demonstrate 
that in both cases the high order solitons split showing minor differences. 
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1. Introduction 

High order solitons have received much attention in recent years due to their application in 
the generation of ultra-short optical pulses and supercontinuum [1,2]. First order solitons, also 
called fundamental spatial solitons, are beams that propagate without spreading in a nonlinear 
media with an intensity dependent refractive index [3]. Different physical mechanism can 
lead to the generation of spatial solitons in nonlinear media [4]. The interaction between 
spatial solitons has been studied numerically and experimentally for the coherent [5–8] and 
incoherent case [9–11]. Collision between spatial solutions has been restricted for the case 
between fundamental ones with the same dimensionality [12–16] or different dimensionality 
[17]. 

High order solitons are bound states of overlapping fundamental solitons with different 
amplitudes. On propagation they present periodic behavior, the same period being 
independent of the order of the solitons. Different mechanisms have been proposed in order to 
split such overlapped solitons such as: high order linear and nonlinear effects, self-steeping, 
high order dispersion, and others [18–23]. The splitting of a high order soliton induced by a 
perturbing pulse was analyzed in where an overlapping between the beams was considered 
[24]. Stabilization and destabilization mechanisms after splitting for second order soliton 
were presented in [25]. 

In this paper we show that the collision of high order spatial solitons in a Kerr nonlinear 
medium induces separation into their first order soliton components. No initial overlapping 
between the solitons is considered. Two collision schemes are investigated: two high order 
solitons approaching at a given velocity and the collision of a soliton with its virtual image 
created by total internal reflection at a linear interface. The splitting of the high order soliton 
is obtained under both conditions the collision and reflection at an interface. The results 
demonstrate a very simple way to split a high order soliton into its fundamental soliton 
components. 

2. High order bright spatial solitons 

The mathematical description of a spatial soliton in a Kerr media is given by the normalized 
Schrödinger equation (NLSE): 

 
2

2D
2

NL

Lq 1 q
i q q,

Z 4 LX

∂ ∂= ±
∂ ∂

 (1) 

where q is the normalized amplitude of the field to the maximum intensity Im
1/2, LD = 

n0k0x0
2/2 is the diffraction length with n0 the linear refractive index for beam, k0 = 2π/λ with λ 

the wavelength, x0 is the initial beam width, LNL = (n2k0Im)−1, n2 the nonlinear refractive index, 
X = x/x0 and Z = z/LD. The positive sign is used for a positive n2 and the negative for the 
opposite case n2<0. For a positive Kerr media, when LD/LNL = 1, the NLSE has a solution 
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 2( , ) sec ( ) exp( / 2),q X Z h X Zκ κ κ= −  (2) 

where κ is the soliton amplitude. This solution is known as the first order bright spatial 
soliton, or fundamental soliton. When N = LD/LNL is an integer larger than 1, the solution 
represents N fundamental solitons that interact nonlinearly in an attractive effective potential 
[5]. In our case we are interested in initial conditions of the form: 

 ( , 0) sec ( ),q X Z N h X= =  (3) 

where N>1 and can be any positive integer. This solution is also known as a high order 
soliton that on propagation presents a periodic behavior. The period length where the initial 
distribution is recovered is Z = mπ/2, where m is an integer. In Fig. 1 we present the 
numerical propagation of a soliton of fourth and fifth order in a period length. It is interesting 
to note that the behavior of a propagating soliton of high order presents the transverse profiles 
very similar to those obtained for solitons of lower order. To show this fact the intensity 
profiles at Z = π/4 for spatial solitons of second, third, fourth and fifth order are shown in the 
top row of Fig. 2. In the bottom row of Fig. 2 are shown the intensity profiles of a sixth order 
soliton at different propagation distances. The sixth order soliton at Z = π/24 is initially 
narrowed, (as the second order soliton at Z = π/4), then at Z = π/18 it is split into two (as the 
third order soliton at Z = π/4), at Z = π/12 it splits into three (as a forth order soliton at Z = 
π/4) and at Z = π/8 it splits into four beams (as the fifth order soliton at Z = π/4). It is clear 
that the sixth order soliton exhibits a similar dynamics as that obtained for the previous order 
solitons 

 

Fig. 1. Propagation of high order solitons for a distance of Z = π/2. Order of the soliton of: (a) 
4th, and (b) 5th. 
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Fig. 2. Intensity profiles for different soliton orders and distances. Top row for a propagation 
distance of π/4 and soliton order of: (a) 2nd, (b) 3th, (c) 4th and (d) 5th. Bottom row for a sixth 
order soliton and propagation distance of: (a) Z = π/24, (b) Z = π/18, (c) Z = π/12 and (d) Z = 
π/8. 

3. Symmetric collision of same order bright spatial solitons 

Initially the symmetric collision of high order solitons was considered. Both solitons made the 
same angle with respect to the z axis. This angle defines the transversal velocity V of the 
soliton (2V = tanθ). The solitons were set at the same distance from the z-axis. Separation 
distances between the solitons larger than 2 were used in this work in order to ensure that 
each beam does not overlap or is affected by the other beam. Interaction between initially 
overlapped solitons has been considered in other works; see as example [26]. The initial 
condition that was used is of the form: 

 ( , 0) sec ( )exp( ) sec ( ) exp( ),C Cq X Z N h X X iVX N h X X iVX= = − − + +  (4) 

where Xc is the half of the separation distance, d, between the solitons. 
After the collision both high order solitons split. The number of beams that appeared after 

the collision depended on the soliton order, see Fig. 3, these beams propagated in parallel way 
making the same angle that the incident solitons, see Fig. 4. The beams with higher intensity 
were closer to the propagation axis and the intensity of the remaining beams decays as the 
distance increased from the center. The width of the generated solitons, after collision, 
increased as the intensity decreased. Not all of the generated solitons are fundamentals, some 
of them exhibit oscillatory behavior after the collision, see Fig. 4. No substantial qualitative 
differences were observed for different transversal velocities (angles) and separations 
between the solitons. 
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Fig. 3. Intensity profiles at Z = 0 (red) and Z = 5π/2 (black) for the symmetric collision of high 
order solitons. The initial separation was 6 and the magnitude of the transversal velocity V = 1. 
Soliton order of: (a) 2nd, (b) 3th, (c) 4th and (d) 5th. 

 

Fig. 4. Top view of the symmetric collision of two solitons of fifth order for the same 
conditions than Fig. 3. 
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4. Symmetric collision of different order bright spatial solitons 

In this section we present the results obtained for the collision between solitons of different 
order. This means that the initial condition was of the form: 

 1 2( , 0) sec ( ) exp( ) sec ( )exp( ),C Cq X Z N h X X iVX N h X X iVX= = − − + +  (5) 

where N1 and N2 are positive integers and N2>N1. 
When one of the colliding solitons is a fundamental of order one, after the collision the 

high order soliton does not fully split. However, it presents a beam with a modulation on its 
top with the same number of peaks that its order, see Fig. 5. Larger propagation distances and 
transversal velocities do not affect considerably this result. We can conclude that the collision 
with a fundamental spatial soliton does not split a high order soliton. 

 

Fig. 5. Intensity profiles at Z = 0 (red) and Z = 5π/2 (black) for the symmetric collision 
between a fundamental soliton and a high order soliton of: (a) 2nd, (b) 3th, (c) 4th and (d) 5th. 

When both of the interacting solitons are of order larger than two, then after the collision 
it is possible to obtain the splitting of the solitons in a number of beams that correspond to the 
order of the lowest order colliding soliton, see Figs. 6 to 8. From this and the previous results 
we can conclude that the splitting of a high order spatial soliton is obtained when the collision 
is with another soliton of the same or larger order. 
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Fig. 6. Intensity profiles at Z = 0 (red) and Z = 5π/2 (black) for the symmetric collision 
between a second order spatial soliton and a high order soliton of: (a) 3th, (b) 4th and (c) 5th. 

 

Fig. 7. Intensity profiles at Z = 0 (red) and Z = 5π/2 (black) for the symmetric collision 
between a third order spatial soliton and a high order soliton of: (a) 4th and (b) 5th. 

 

Fig. 8. Intensity profiles at Z = 0 (red) and Z = 5π/2 (black) for the symmetric collision 
between a fifth order and a forth order spatial soliton. 

5. Collision of a high order soliton with its virtual image at a linear interface 

A linear interface was simulated considering the following function: 

 
1

( ) (1 tan h ),
2

f x xκ= −  (6) 

where κ is the steepness of the interface. For x<0 the medium was considered nonlinear Kerr 
type (as in the previous sections) with a linear refractive index n0. For x>0 the medium was 
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considered linear with a linear refractive index n1. The first studies on solitons incident to 
interfaces were made in 1989 [27]. Since then many contributions to understand the 
phenomena have been done. 

In our case n0>n1 such that a fundamental soliton can be totally reflected at some critical 
angle (V = 0.3, see Fig. 9(a)). Setting the interface at X = 2 and the high order soliton at X = 0 
with a transversal velocity of V = 0.3, under these conditions the splitting of the high order 
soliton was obtained after reflection, see Fig. 9. The number of beams obtained after 
reflection coincide with the soliton order. The angle with respect to the interface of the 
reflected beams is not the same: the more intense beam made the same angle that the incident 
soliton, the other beams made a larger one. The intensity of the reflected beams decays as 
their distance from the interface. The high intensity reflected beam behaved as a fundamental 
soliton, the rest presented an oscillatory behavior. Smaller angles of the soliton to the 
interface produced a more complicated dynamic in the reflected beams but the splitting was 
always obtained. 

 

Fig. 9. High order solitons incident to a linear interface. Interface set at X = 2. Soliton 
transversal velocity V = 0.3. Propagation distance of 24. Soliton order of (a) fundamental, (b) 
2nd, (c) 3th and (d) 4 th. 

6. Conclusion 

We have demonstrated the splitting of high order bright spatial solitons after collision with 
another high order soliton or a virtual one created by the reflection in a linear interface. For 
collisions between spatial solitons of the same order, the results demonstrate that after the 
collision the high order soliton split in a number of beams that correspond to the order of the 
soliton. Collision between solitons of different order does not necessary split the soliton of the 
higher order. In order to obtain the splitting it is not necessary to make a collision with other 
soliton, the splitting can be stimulated by the reflection at a linear. The results presented in 
this work can be applied for the case of temporal solitons. 
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