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Abstract
We try to classify the spectrum of the two-qubit Dicke model by calculating
two quantum information measures of its eigenstates: the Wootters concurrence
and the mutual quantum information. We are able to detect four spectral sets
in each parity subspace of the model: one set is regular and given by the
product of a Fock state of the field and the singlet Bell state of the qubits;
the rest are fairly regular and related to the triplet states of the Bell basis. The
singlet states become trapping states when we couple the Dicke model to an
environment of harmonic oscillators, making them candidates for generating
maximally entangled states in experimental realizations of ion trap quantum
electrodynamics (QED) and circuit QED. Furthermore, they are robust and
survive the inclusion of driving and dipole–dipole interactions, pointing to
their use for storing quantum correlations, and it is straightforward to provide
a generalization of these trapping states to the Dicke model with even number
of qubits.

Keywords: quantum optics, Dicke model, quantum correlations
PACS numbers: 42.50.Ct, 42.50.−p, 42.50.Pq, 42.50.Dv

1. Introduction

The presence of regularity in energy or quasi-energy spectra points to the existence of
symmetries that translate into conserved dynamical variables [1]. In any generic system the
spectrum consists of a regular and an irregular part [2, 3]. If the classical analogue of a quantum
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model is fully integrable, then a set of quantum numbers ascribed to the energy levels ought
to exist. For fully non-integrable classical systems, their quantum analogue spectra should be
irregular and the energy levels cannot be labeled with quantum numbers related to conserved
dynamical variables. Sometimes the system may have a partial dynamical symmetry [4], and
then one of three cases may arise: (i) some of the proper states conserve a certain constant of
motion, (ii) all of the proper states conserve part of a constant of motion, or (iii) some of the
proper states conserve a part of a constant of motion.

We are interested in the symmetries of two identical qubits interacting with a quantized
field under the Dicke model [5] with the inclusion of the so-called counter-rotating terms.
This two-qubit full Dicke model has a well known parity symmetry [6, 7] but no other fully
conserved constant of motion has been found for it. It can be realized experimentally with
solid state devices [8, 9] and trapped ions [10, 11]. Our interest in the symmetries is twofold.
First, finding the conserved dynamical variables of a quantum model helps in constructing
trapping states for them. Trapping states are the stationary states of a system that do not evolve
in the presence of losses. In the single-qubit case in the weak coupling regime, trapping states
can be used to generate macroscopic superposition states of the field [12, 13]. Second, once all
the conserved dynamical variables are found, it is straightforward to provide an analytic time
evolution operator which can help in the design of two-qubit quantum gates outside the weak
coupling regime [14]. To the best of our knowledge, while the spectra and integrability of a
single-qubit [15] and a three-qubit [16] Dicke model have been studied, a detailed statistical
description of the spectra for the two-qubit model does not exist and nothing has been said
about its trapping states. Some of us have explored analytic methods for diagonalizing the two-
qubit Rabi model [6] and another analytic description of its spectra has been discussed during
the reviewing of this work [7], the ground state of the two-qubit Dicke model in the ultra-strong
coupling regime has been recently approximated by using a variational method [17], and the
dynamics of quantum correlations of two qubits coupled to a bath with a Lorentzian spectrum
and independent reservoirs has been given numerically [18].

Here, we study the structure of the spectrum and eigenstates of the two-qubit Dicke model
by means of Peres suggestion for finding conserved quantities in model Hamiltonians [1]. We
use measures of entanglement from quantum information theory: the Wootters concurrence
and the quantum mutual information of the qubit ensemble, which allow us to propose a
classification of the two-qubit Dicke model spectrum into four fairly regular spectral classes.
One of these classes is related to the singlet state in the Bell basis which can act as a trapping
state for the qubit part if the system is open due to its well known properties [19]. In order to
provide an extra example for the method for classifying the spectra, we also discuss a variation
of the Dicke model realizable in ion traps that yields trapping states of the form of other
Bell states. Then, we generalize these classes of trapping states to systems composed of even
numbers of qubits. Bell states are maximally entangled and their generation and preservation
is a crucial sought-after goal for quantum communication and information purposes; cf [20]
and references therein for approaches under the RWA. Thus, we discuss how these trapped
states allow for the creation and storage of highly entangled states between two atoms in the
presence of an environment.

2. Wootters concurrence in eigenstates of the two-qubit Dicke model

We are interested in two particular realizations of the two-qubit Rabi model; one is the Dicke
model:

Ĥ1 = ωn̂ + ω0Ŝz + g(â† + â)Ŝx, (1)
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where the two-qubit operators are defined as Ŝ j = ∑
k ŝ(k)

j and the operators for the kth qubit are
half the Pauli matrices, ŝ(k)

j = σ̂
(k)
j /2, related to the ensemble of identical qubits of transition

frequency ω0. The boson field of frequency ω is described through the creation (annihilation),
â† (â), and number, n̂ = â†â, operators. The Dicke model in (1) describes the basic
configuration of identical Rydberg atoms inside a high-Q cavity, solid-state qubits coupled to
a strip line resonator or trapped ions in the same vibrational mode [21]. It is straightforward to
see that the corresponding Hilbert space can be split into triplet,

{|�±,n〉, |�+,n〉
}
, and singlet,{|�−,n〉

}
, sectors where

|�±,n〉 = 1√
2
|n〉(|g, g〉 ± |e, e〉), (2)

|�±,n〉 = 1√
2
|n〉(|g, e〉 ± |e, g〉). (3)

We have discussed in the past a more general model of (1), where the qubits are non-identical
[6], and will use our previously obtained knowledge in the present case. The Dicke model
conserves parity and the sectors of the Hilbert space can be further subdivided into two parity
subspaces each. In the singlet sector a particular eigenstate where n is odd belongs to the
positive parity subspace and those with even photon number n belong to the negative parity
subspace. These singlet states are eigenstates of the Dicke model in (1) with the λn = ωn as
eigenvalues; their concurrence is maximal as they belong to the Bell basis, and the action of
all orbital angular momentum operators over them is null, Ŝ j|�−,n〉 = 0 with j = x, y, z. Thus,
even with the addition of driving, �yŜy or �xŜx, they continue to be eigenstates. Furthermore,
the inclusion of dipole–dipole interactions, δ j ŝ

(1)
j ŝ(2)

j with j = x, y, z, only modifies the
eigenvalue, such that λn = ωn −∑

j δ j/4, due to the fact that ŝ(1)
j ŝ(2)

j |�−,n〉 = −|�−,n〉. Thus,
these eigenstates will become trapping states in the presence of an environment and driving,
as we will show below.

Now, we can conjecture the prediction of three other classes of eigenstates, belonging to
the triplet sector, via the Peres suggestion for finding new conserved quantities [1]. In other
words, a symmetry in any given system should manifest in the spectrum; i.e. we should be
able to label the energies with quantum numbers. In the case of the JC model the symmetries
are parity and number of excitations, but in the Dicke model only parity commutes with the
Hamiltonian and the other symmetry is unknown. We try to find an extra symmetry for the
two-qubit Dicke model by exploring entanglement measures of its eigenstates in the triplet
sector. Note that any eigenvector in this sector can be written as

|ψ+,λ〉 =
∑

j

(
c(+,λ)

0, j |2 j, ee〉 + c(+,λ)

1, j |�+,2 j+1〉 + c(+,λ)

2, j |2 j, gg〉), (4)

|ψ−,λ〉 =
∑

j

(
c(−,λ)

0, j |2 j + 1, ee〉 + c(−,λ)

1, j |�+,2 j〉 + c(−,λ)

2, j |2 j + 1, gg〉), (5)

for positive and negative parity subspaces, in that order. It is straightforward to see that
〈Ŝx〉 = 〈Ŝy〉 = 0, but the action of the operators Ŝ j|ψ〉 will not necessarily be zero. Thus,
these states will not survive the inclusion of driving or coupling the system to an environment.
Furthermore, the reduced two-qubit states are X-states of the form

ρ̂ =

⎛
⎜⎜⎝

ree 0 0 reg

0 r� r� 0
0 r� r� 0

r∗
eg 0 0 rgg

⎞
⎟⎟⎠ , (6)

where ree = ∑
j |c(±,λ)

0, j |2, r� = 1
2

∑
j |c(±,λ)

1, j |2, rgg = ∑
j |c(±,λ)

2, j |2, and reg = ∑
j c(±,λ)

0, j c(±,λ)∗
2, j .

Here, it is straightforward to calculate the Wootters concurrence [22], Cn = max(0, ε1 − ε2 −
ε3 − ε4), where the real values ε j are the square roots of the eigenvalues of ρ̃ρ in decreasing

3



J. Phys. A: Math. Theor. 47 (2014) 135306 B M Rodrı́guez-Lara et al

n

nC

0
0

1

500
n

0 500

(a) (b)

Figure 1. Wootters concurrence versus eigenvalues: (a) λ4n+3 (light gray) and λ4n+2 (dark
red); (b) λ4n+1 (light green) and λ4n (dark blue). The first 2000 eigenstates are explored
for the positive parity subspace of the two-qubit Dicke model in (1) on resonance in
the ultra-strong coupling regime; i.e., ω0 = ω and g = 1.1ω with ω = 1. The proper
system was calculated using matrices of dimension 4000, which provides convergence
errors of δλn ∈ [10−15, 10−11] and �Vn ∈ [10−17, 10−15]. The red dots with Cn = 1 in
(a) correspond to the trapping states in the singlet sector.

order, ε1 > ε2 > ε3 > ε4, withρ̃ = σ̂ (1)
y σ̂ (2)

y ρ∗σ̂ (2)
y σ̂ (1)

y ; in our case one of the eigenvalues is
zero and the other three are 4|r� |2 and reergg + |reg|2 ± 2|reg|√reergg.

Figure 1 shows the value of the concurrence for the first 2000 eigenstates of the
Dicke model in (1) with parameters ω0 = ω, g = 1.1ω, and ω = 1; i.e., the qubit and
field frequencies are on-resonance and the coupling corresponds to the USC regime. The
numerical diagonalization was performed in the whole positive parity subspace spanned by
{|2k, e, e〉, |2k, g, g〉, |2k + 1, g, e〉, |2k + 1, e, g〉} with k = 0, 1, 2, . . ., following [6]. The
subspace size, S, was increased until a convergence error, δλn(S) = |λn(S) − λn(S + 1)|,
where λn(S) is the nth eigenvalue for a matrix of size S and �Vn(S) = 1−|〈Vn(S)|Vn(S+1)〉|,
where |Vn(S)〉 is the nth eigenstate for a matrix of size S, of less than 10−10 was obtained; in the
case shown, the size was S = 4000 and the convergence errors were δλn ∈ [10−15, 10−11] and
�Vn ∈ [10−17, 10−15]. We explored an evenly distributed sample of 5000 coupling parameters
in the range g ∈ [0.05, 5] ω on resonance, ω0 = ω, and another sample of 5000 with random
coupling and detuning, g ∈ [0.05, 5] ω and ω0 ∈ [0.5, 1.5] ω. Something equivalent can be
done in the negative parity subspace and one obtains similar results. The common occurrence
was finding four discernible clusters in the concurrence for the qubit part of the eigenstates; the
four clusters can be seen in Ŝz but are not so well defined, as they overlap. In the weak coupling
regime, g ∼ 0.05, the concurrences for triplet eigenstates overlap but the different clusters can
be seen in the mean value of the energy difference, Ŝz, and in the mutual quantum information
of the qubits, to be described in the following section. The trends in the concurrence point to a
division of the spectrum of the model into four sections for each parity subspace: one regular
section given by the singlet sector with constant spacing between continuous elements equal to
s1 = 2ω and three belonging to the triplet sector where the distances between the eigenvalues
are fairly regular, s1 ∼ 2ω. In the case presented in figure 1 the regular sector was {λ4n+2} with
n � 0 and the distance is given by s1 = λ4n+6 − λ4n+2 = 2, while the fairly regular sectors
are {λ4n+1}, {λ4n+3} and {λ4n+4} where the eigenvalue distances are s1 = λ4n+ j+4 − λ4n+ j ∼ 2
with j = 0, 1, 3. In addition, we calculated the mean average for the average nearest-neighbor
spacing for both numerical samples for the on-resonance and the off-resonance two-qubit
Dicke model. Here we did not distinguish the singlet sector beforehand and just calculated
the average fourth-nearest-neighbor spacing, which happens to be equivalent to finding the
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Table 1. Mean average of the average spacing between continuous elements for the
four subsets of the positive parity subspace spectrum of the two-qubit on-resonance
and off-resonance Dicke models. In each case, 2000 proper values for each of the 5000
parameter samples were considered.

〈s1〉 On resonance Off resonance

{λ4n+1} 2.007 23 ± 7.221 87 × 10−3 2.007 19 ± 7.165 37 × 10−3

{λ4n+2} 2.006 46 ± 6.991 62 × 10−3 2.006 41 ± 6.938 38 × 10−3

{λ4n+3} 2.005 82 ± 6.666 01 × 10−3 2.005 476 ± 6.628 55 × 10−3

{λ4n+4} 2.005 32 ± 6.264 84 × 10−3 2.005 24 ± 6.245 73 × 10−3

average nearest neighbor by selecting the spectral classes. The numerical results point to a
fairly regular spectrum with spacings given by s1 ∼ 2ω, as shown in Table 1. Thus, thanks to
the Peres criterion we can conjecture that the spectrum for the two-qubit Dicke model is fairly
regular, as there are always three eigenvalues in the range (ωn, ω(n + 2)) where n is even or
odd depending on the parity subspace. In other words, there may exist an extra symmetry or
partial symmetry [4] beyond parity in the model.

We tried to no avail to find such a symmetry. We managed to arrive at an analytic expression
for the eigenstate for the two-qubit Dicke model in the triplet sector,∣∣ f (±,λ)

2

〉 = ωn̂ + ω0 − λ

ωn̂ − ω0 − λ

∣∣ f (±,λ)

0

〉
, (7)

∣∣ f (±,λ)

0

〉 = − g√
2

[
ωn̂ − ω0 − λ

(ωn̂ − λ)2 − ω2
0

]
(â + â†)

∣∣ f (±,λ)

1

〉
, (8)

where it is only necessary to determine{
λ − ωn̂ + g2

(
â + â†

) [
ωn̂ − λ

(ωn̂ − λ)2 − ω2
0

]
(â + â†)

} ∣∣ f (±,λ)

1

〉 = 0. (9)

We have rewritten (4) and (5) as

|ψ±,λ〉 = | f (±,λ)

0 〉|ee〉 + ∣∣ f (±,λ)

1

〉|�+〉 + ∣∣ f (±,λ)

2

〉|gg〉. (10)

In other words, we only need to determine two sets of coefficients,
{
c(±,λ)

1, j+1

}
, that obey a

three-term recurrence relation,

α
(±)
j (λ)c(±,λ)

1, j−1 + β
(±)
j (λ)c(±,λ)

1, j + α
(±)

j+1(λ)c(±,λ)

1, j+1 = 0, (11)

in each parity subspace with

α
(+)
j (λ) = g2√2 j(2 j + 1) (2 jω − λ)

(2 jω − λ)2 − ω2
0

, (12)

α
(−)
j (λ) = g2√2 j(2 j − 1) [(2 j − 1)ω − λ]

[(2 j − 1)ω − λ]2 − ω2
0

, (13)

β
(+)
j (λ) = λ − (2 j + 1)ω +

√
2 j + 1

2 j
α

(+)
j (λ) +

√
2 j + 2

2 j + 3
α

(+)

j+1(λ), (14)

β
(−)
j (λ) = λ − 2 jω +

√
2 j − 1

2 j
α

(−)
j (λ) +

√
2 j + 1

2 j + 2
α

(−)

j+1(λ). (15)

5
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Note that the coefficients vanish, c(±,λ)

1, j = 0, for large values of j as compared to the eigenvalues
and frequencies, j � λ, ω, ω0. All the analytic recurrence relations were confirmed by
our numerical eigenstates. These results reduce and simplify those provided in [6] and are
equivalent to those presented more recently in [7]; e.g., the spectra of the system reduce to
two degenerate forced oscillator chains for cases well into the deep strong coupling regime,
g � ω0, where it is possible to fully describe the dynamics of the system [6]. We performed
a statistical analysis of the boson field distributions, e.g. examining the Mandel Q parameter
which seems to be always positive, but we gained no insight from these results.

3. Mutual quantum information for eigenstates in a variation of the Dicke
model

We are interested in showing that the mutual quantum information for two qubits is also a
good test function for trends in the spectrum. For that reason, the second realization of the
two-qubit Rabi model that we are interested in is a variation of the two-qubit Dicke model,

Ĥ2 = ωn̂ + ω0
(
ŝ(1)

z − ŝ(2)
z

) + g(â† + â)Ŝx. (16)

Mathematically, this is just a unitary rotation over the second qubit around its σ (2)
x axis,

R̂ = eiπs(2)
x . Physically, this may be obtained from a two-trapped-ion scheme driven by a

series of stationary lasers [23]. Everything that we said before holds for this system, with the
difference that the isolated eigenstate belongs to the triplet of the Bell basis, |�−,n〉. They
fulfil

(
ŝ(1)

z − ŝ(2)
z

) |�−,n〉 = 0, Ŝx|�−,n〉 = 0, Ŝy|�−,n〉 = −i|�+,n〉 and Ŝz|�−,n〉 = −|�+,n〉.
So, they will be trapping states as long as the driving and dissipation do not involve Ŝy nor Ŝz.
The quantum mutual information of the reduced qubit states, In = Ŝ(1)

vN + Ŝ(2)
vN − ŜvN where the

operators ŜvN and Ŝ( j)
vN are the von Neumann entropy for the X-state and qubit j = 1, 2 reduced

density matrices, can be easily calculated from the eigenstates of X-states as given in [24]; the
|�−,n〉 states yield the maximum value of 2. Again, we can intuit four classes of eigenstates;
actually, the trends for the quantum mutual information are better defined than those for the
concurrence (figure 2). The numerical diagonalization was performed as described before.

4. Trapping in the presence of an environment

While the discussion about an adequate master equation describing the open dynamics of the
Dicke model is still open [25], let us discuss a typical environment scenario where the qubits
couple to multiple boson field modes; this means that the extra terms

ĤRQ =
∑

j

b̂†
j b̂ j +

∑
j

(b̂†
j + b̂ j)Ŝx (17)

are added to (1) and (16). Here the multi-mode reservoir is described through the creation
(annihilation) operators b̂†

j (b̂ j), and these field modes are equivalent to having a non-ideal
cavity or strip line resonator in cavity or circuit quantum electrodynamic (QED), or a real
world driving laser with a linewidth in ion trap QED. Then, the trapping states have the form

|�n〉 = 1√
2
|n〉a| {m}〉b(|g, e〉 − |e, g〉), (18)

for the two-qubit Dicke model, and

|�n〉 = 1√
2
|n〉a| {m}〉b(|e, e〉 − |g, g〉), (19)

for the variation of the two-qubit Dicke model. In both cases the set in the bosonic reservoir is
defined as {m} = {m1, m2, . . .}. In other words, these states will not evolve. If we also consider

6
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Figure 2. Mutual quantum information versus eigenvalues: (a) λ4n+3 (light gray) and
λ4n+2 (dark red); (b) λ4n+1 (light green) and λ4n (dark blue). The first 2000 eigenstates are
explored for the positive parity subspace of the two-qubit variation of the Dicke model
in (16) on resonance in the ultra-strong coupling regime; i.e., ω0 = ω and g = 1.1ω with
ω = 1. The proper system was calculated using matrices of dimension 4000, which
provides convergence errors of δλn ∈ [10−15, 10−11] and �Vn ∈ [10−17, 10−15]. The
dark red dots in (a) with In = 2 correspond to the trapping states |�−,n〉.

another typical source of noise coming from a non-ideal leaky cavity or strip line resonator
for cavity and circuit QED setups or thermal radiation from the environment in an ion trap,
we need to add the terms

ĤRC =
∑

j

ĉ†
j ĉ j +

∑
j

(ĉ†
j + ĉ j)(â

†
j + â j). (20)

Again, the qubit part of the state will not decay; it will be trapped. Thus, one may intuit that
in the presence of losses, a slightly excited qubit state will decohere and be trapped into these
states while the field continues to decohere towards the coherent vacuum.

Note that it is possible to find a class of trapping states for the Dicke model in (1) for
qubit ensembles with even number of components, Nq = 2k, as

|φn,k〉 = 1

2k
|n〉

∏
(p,q)

(|g, e〉(p,q) − |e, g〉(p,q)), (21)

where the pairs (p, q) cover all possible pairs of qubits without repeating a component; e.g.,
for four qubits we will have |�(1)

n 〉 = 1
2 |n〉(|g, e〉(1,2) − |e, g〉(1,2))(|g, e〉(3,4) − |e, g〉(3,4)),

|�(2)
n 〉 = 1

2 |n〉(|g, e〉(1,3) − |e, g〉(1,3))(|g, e〉(2,4) − |e, g〉(2,4)), |�(3)
n 〉 = 1

2 |n〉(|g, e〉(1,4) −
|e, g〉(1,4))(|g, e〉(2,3) − |e, g〉(2,3)) and all linear combinations of these. These states will share
the characteristic of |�−,n〉 that the action of all orbital angular momentum operators over
them is null. Thus, the qubit ensemble part will not evolve even under driving and losses,
as we showed for the two-qubit case. Following an equivalent recipe, it is straightforward to
construct trapping states for qubit ensembles of even size, Nq = 2k, for the variation of the
Dicke model in (16). This corresponds to the Hamiltonian

Ĥ2 = ωn̂ + ω0

∑
(p,q)

(
ŝ(p)

z − ŝ(q)
z

) + g(â† + â)Ŝx, (22)

leading to trapping states of the form

|ψn,k〉 = 1

2k
|n〉

∏
(p,q)

(|e, e〉(p,q) − |g, g〉(p,q)). (23)

7
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Again, the pairs (p, q) cover all possible pairs of qubits without repeating a component; e.g.
if Ĥ2 = ωn̂ + ω0

∑k−1
j=0(ŝ

(2 j)
z − ŝ(2 j+1)

z ) + g(â† + â)Ŝx, the trapping state will be given by
|ξn,k〉 = 1

2k |n〉∏
j(|e, e〉(2 j,2 j+1) − |g, g〉(2 j,2 j+1)) and all possible non-repeating iterations of

index pairs of the form (even, odd) integers. The difference here is that these states will only
be impervious to the action of Ŝx. Thus they will be trapping states as long as we do not add
driving of the form �yŜy or �zŜz.

5. Conclusions

We have shown that the Wootters concurrence and quantum mutual information of the reduced
qubit eigenstates point to the existence of four sets of normal modes of the two-qubit Dicke
model, which may attest to the existence of a symmetry or partial symmetry in the model.
Numerical tests show that the corresponding four sets of eigenvalues are fairly regular, with
eigenvalue spacings between elements close to two times the frequency of the field, i.e. a
structure equivalent to that of an harmonic oscillator for each set. One of those eigenstate
sets is a product state of a Fock state of the field and the singlet Bell state of the qubit
ensemble with a regular spectrum with precise spacing of two times the field frequency. These
eigenstates are maximal entangled states and are trapping states of the corresponding models
coupled to an environment. The trapping states given for the Dicke model are so robust that
they continue trapped even in the presence of driving and dipole–dipole interactions. Once
the system reach these states, one can add several extra interactions that will not affect them;
they will remain invariant, in principle, forever. We explored 2000 proper values for each one
of 5000 on-resonance and off-resonance model samples with parameter ranges g ∈ [0.05, 5]ω
and ω0 ∈ [0.5, 1.5]ω. We also explored a variation of the Dicke model where equivalent results
were found regarding the spectrum, but the trapping states in this case were not so robust as
they only resist a type of driving and dipole–dipole interaction.
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