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We cast the phase state as a SU�1; 1� nonlinear coherent state to support the idea that the SU�1; 1� representation of
the electromagnetic fieldmay be helpful in some instances and to bring forward that it may relate to the phase state
problem. We also construct nonlinear coherent states related to the exponential phase operator and provide their
corresponding nonlinear annihilation operators. Finally, we discuss the propagation of classical fields through
arrays of coupled waveguides that are solved through the use of nonlinear coherent states of SU�1; 1� or the
exponential phase operator. © 2014 Optical Society of America
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1. INTRODUCTION
The idea of a quantum phase operator is an old problem in
quantum mechanics [1]. In 1926, London found that there is
no quantum mechanics Hermitian operator that corresponds
to the phase variable in classical mechanics [2], and in its
place proposed an exponential phase operator, ceiϕ, with prob-
lems of its own [3]. The idea of a phase operator came to the
field of quantum optics when Dirac approached the quantiza-
tion of the electromagnetic field via angle variables [4] despite
the problems pointed out by London, and, after a while,
Susskind and Glogower rediscovered the exponential phase
operator [5].

Here our interest is twofold. First, there is an effort in
theoretical physics to bring forward bosons as multimode co-
herent states of the universal covering group of SU�1; 1� [6–9].
Such an approach may not simplify the problems found
in quantum optics, which are well developed through the
Heisenberg–Weyl group provided by the number, creation,
and annihilation operators, but we will show in the following
that it is possible to cast the phase state as a generalized
SU�1; 1� coherent state based on the Lie algebraic represen-
tation of quantum phase and number operators [10–12]. We do
not pretend to touch upon the phase problem, but our ap-
proach may provide further support to the SU�1; 1� formalism
and may open a new avenue to approach some quantum op-
tics problems. Second, coherent states have proved useful in
describing the quantum electromagnetic field since their intro-
duction to quantum optics by Sudarshan [13] and Glauber [14];
we owe their inception as minimum uncertainty product
states in quantum mechanics to Schrödinger [15]. Some sets
of nonlinear coherent states of the field have been brought
forward in quantum optics recently [16–20], and, here, we
want to provide a couple of nonlinear coherent states related
to the exponential phase operator a là Perelomov [21] and
relate them to operators that are diagonal in those nonlinear
coherent bases a là Barut and Girardello [22]. Finally, we
bring forward the propagation of classical light in arrays of
coupled waveguides as an example of how these nonlinear

coherent states provide a simple solution to their classical
optics analogues.

2. PHASE STATE AS A SU�1;1�
COHERENT STATE
We first want to show that the phase state in terms of Fock
states [23,24],

jϕi≡ 1������
2π

p
X∞
j�0

eiϕ�j�
1
2�jji; (1)

can be cast in the form of a generalized SU�1; 1� coherent
state. First, let us define the SU�1; 1� group elements,
K̂0 � n̂� k, K̂� � â†

�������������
n̂� 1

p
and K̂

−
� �������������

n̂� 1
p

â with
Bargmann parameter k � 1∕2, in terms of the creation (anni-
hilation) operators, â† (â), such that �K̂0; K̂�� � �K̂� and
�K̂�; K̂−

� � −2K̂0 [25]. Realizing that K̂0jk;ni� �n�k�jk;ni,
K̂ j

�jk; 0i � j!jk; ji and obviating the Bargmann parameter,
jni≡ jk; ni leads us to write

jϕi � 1������
2π

p eiϕK̂0eK̂� j0i: (2)

Now, we can use the normal to antinormal ordering expres-
sions (2.16)–(2.20) in [26],

eA�K̂�eln A0K̂0eA−
K̂

− � eB−
K̂

−eln B0K̂0eB�K̂� (3)

with

A� � B�B0

1 − B�B0B−

; (4)

A0 �
B0

�1 − B�B0B−
�2 ; (5)
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B� � A�
1 − A�A−

; (6)

B0 �
�A0 − A�A−

�2
A0

: (7)

In our case the parameters are B
−
� 0, B0 � eiϕ, and B� � 1,

and we have used the fact that eξK̂− j0i � j0i to reach our goal
and write a phase state as a generalized SU�1; 1� coherent
state in a Perelomov-like form,

jϕi � 1������
2π

p ee
iϕK̂�eiϕK̂0e−e

−iϕK̂
− j0i: (8)

Furthermore, we already know that the phase state is an
eigenstate of the exponential phase operator. Casting it in
terms of SU�1; 1� elements allows us to see it as a nonlinearly
deformed annihilation operator whose eigenstate is the phase
state,

ceiϕjϕi � 1�������������
n̂� 1

p âjϕi (9)

� 1

K̂0 � 1
2

K̂
−
jϕi (10)

� eiϕjϕi; (11)

which makes the phase state a Barut–Girardello nonlinear co-
herent state of the exponential phase operator; i.e., it can be
seen as a deformed annihilation operator Ĉ � f �Â0�Â−

with
f �Â0� � f �n̂� � �n̂� 1�−1∕2 and Â

−
� â for the Heisenberg–

Weyl group or f �Â0� � f �K̂0� � �K̂0 � 1∕2�−1 and Â
−
� K̂

−

for SU�1; 1�.

3. LONDON NONLINEAR COHERENT
STATES
Nowwewant to construct nonlinear coherent states related to
the exponential phase operator proposed originally by
London; thus, we have christened them London nonlinear co-
herent states for short. Let us start with the Barut–Girardello
coherent state for the noncompact operator K̂

−
of SU�1; 1�

with Bargmann parameter k � 1∕2 [27,28],

jαBGi �
1�����������������

I0�2jαj�
p X∞

j�0

αj

j!
jji; (12)

such that K̂
−
jαBGi � αjαBGi, where we are keeping all the def-

initions from the previous section and the function In�x� is the
nth modified Bessel function of the first kind. If we recover

the action of the exponential phase operators, V̂ ≡
ceiϕ �

�n̂� 1�−1∕2â and V̂†
≡

de−iϕ � â†�n̂� 1�−1∕2, over Fock states,
V̂ jni � jn − 1i and V̂†jni � jn� 1i, it is straightforward to
write this Barut–Girardello coherent states as Perelomov-like
nonlinear coherent states,

jαBGi �
1�����������������

I0�2jαj�
p eαV̂

†

e−α
�V̂ j0i: (13)

Now, due to the problems arising from the right-unitarity of
the exponential phase operators, V̂ V̂† � 1̂ but V̂†V̂� 1̂− j0ih0j,
trying to write Eq. (13) as a nonlinear displacement operator
acting on the vacuum is beyond our current scope but we
can bring forward another nonlinear coherent state a là

Perelomov related to the exponential phase operator [29],

jαi � eα�V̂
†
−V̂�j0i; α ∈ R (14)

� 1
α

X∞
j�0

�j � 1�Jj�1�2α�jji; (15)

which is a Barut–Girardello coherent state, Ĉαjαi � αjαi, of
the α-deformed annihilation operator,

Ĉα �
αJn̂�1�2α�

�n̂� 2�Jn̂�2�2α�
�������������
n̂� 1

p
â; (16)

�
αJK̂0�1

2
�2α��

K̂0 � 3
2

�
JK̂0�3

2
�2α�

K̂
−
; (17)

where the function Jm�x� is the mth Bessel function of the
first kind. Note that while Eq. (14) allows for any real value
of parameter α, the definition of the related operator seems to
point that the coherent parameter α should never be half a
root of a Bessel function, Jn�2�2α� ≠ 0 for all n ≥ 0; this
occurrence may be similar to Eq. (15), where it may appear
that the coherent parameter must not be zero but such a value
is allowed by Eq. (14) or be a topological issue related to the
definition of generalized coherent states [30–32].

4. CLASSICAL OPTICS EXAMPLES
The quintessential examples involving the SU�1; 1� group be-
long to quantum optics. It is well known that the degenerate
parametric oscillator preserves [33] and generates [34]
SU�1; 1� coherent and squeezed states, in that order. It has
also been theoretically proposed [35] and experimentally
shown [36] that the phase state probability of a highly
squeezed state shows a bifurcation as a function of the squeez-
ing parameter. A theoretical program emerged to approach
linear dissipative processes in quantum optical systems
related to phase modulation and photon echo [37]. Even
purely theoretical models such as the Buck–Sukumar model
[25,38] and the anharmonic oscillator [39,40] have shown the
benefits of using the SU�1; 1� formalism in quantum optics,
although care must be exerted depending on the particular
circumstances [41–43].

Here we are interested in providing classical optics exam-
ples in which the use of the SU�1; 1� or London nonlinear
coherent states simplifies the problem of describing the
propagation of a classical field through a photonic lattice.
Arrays of waveguides have provided a classical simulator
of quantum and relativistic physics [44,45]. In particular, some
of us have shown classical analogues to quantum coherent
states in one-dimensional photonic lattices [46–48] and have
used the SU�1; 1� group to propose isospectral arrays of
coupled waveguides [49]. First, allow us to consider a semi-
infinite lattice composed of identical waveguides and de-
scribed by the effective differential equation set,
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−i
d
dz

Ej�z� �
h ������������������������������

�j � 1��j � 2�
p

Ej�1 �
�����������������
j�j � 1�

p
Ej−1

i
; (18)

where the field amplitude at the jth waveguide is given by Ej

and E
−jjj � 0. This system is equivalent to that studied in [50]

with parameter χ � 1, and it is straightforward to show that
this is equivalent to the Schrödinger-like equation with jEi �P

jEjjk; ji and Bargmann parameter k � 1∕2,

−i
d
dz

jEi � �K̂� � K̂
−
�jEi: (19)

We can calculate the impulse function, Im;n, which is the field
at the mth waveguide given that the initial field impinged just
the nth waveguide, as a projected SU�1; 1� coherent state
by use of well-known formulas. In this case we can use
Eq. (3.1) in [26],

jk;αi � eαK̂�−α�K̂− jk; 0i (20)

� �1 − jμj2�k
X∞
m�0

�����������������������
Γ�2k�m�
m!Γ�2k�

s
μmjk;mi; (21)

where μ � �α∕jαj� tanh jαj, with z � iα and k � 1∕2 to obtain

Im;0�z� � hmjeiz�K̂��K̂
−
�j0i (22)

� sechz�i tanh z�m; (23)

where we have obviated, again, the Bargmann parameter
in the notation for the basis. Thus, the classical field distribu-
tion for a starting field impinging the zeroth waveguide is
identical to the distribution of a SU�1; 1� coherent state
jk; izi � eiz�K̂��K̂

−
�jj; 0i. Note that the increasing coupling

strength between waveguides will mean that at some point
second-, third-, and higher-order neighbor couplings should
be taken into account, and, thus, the experimental realization
of this example is not trouble-free.

An example involving London coherent operators is pro-
duced by a semi-infinite array of identical waveguides that
are homogeneously coupled [51,52],

−i
d
dz

Ej�z� � Ej�1 � Ej−1; (24)

leading to the Schrödinger-like equation

−i
d
dz

jEi � �V̂† � V̂�jEi: (25)

Again, it is straightforward to write

Im;0�z� � hmjeiz�V̂†�V̂�j0i (26)

� 1
z
im�m� 1�Jm�1�2z�; (27)

where we have used Eq. (15) and the fact that
e−iπn̂∕2eiα�V̂

†�V̂�eiπn̂∕2 � eα�V̂
†
−V̂� with α ∈ R. Here the field am-

plitude distribution for an initial field impinging just the zeroth

waveguide corresponds to the distribution of a London non-
linear coherent state defined by jizi � eiz�V̂

†�V̂�j0i. In this case
the experimental realization only has to take into account that
the length and size of the photonic lattice should keep light far
away from the last waveguide. In both cases, the distribution
is that of a SU�1; 1� or London displaced number state when
the field impinges the nth waveguide with n ≠ 0.

5. CONCLUSION
We have shown that describing the quantum electromagnetic
field via the SU�1; 1� algebra leads to a representation of the
phase state as a generalized coherent state. The use of this
formalism may simplify the work needed to study quantum
optical systems such as anharmonic oscillators, degenerate
parametric oscillators, or two-mode couplers in phase repre-
sentation. We took the opportunity, arisen from describing the
phase state as a nonlinear coherent state, to introduce other
nonlinear coherent states related to the exponential phase op-
erator. We showed that the Barut–Girardello coherent state
for K̂

−
can be seen as a Perelomov-like coherent state related

to the exponential phase operators. Also, we brought forward
the operators that have as proper states the vacuum displaced
via exponential phase operators. All the nonlinear coherent
states described here were cast in both a Barut–Girardello
eigenvalue relation and Perelomov-like form. Finally, we dis-
cussed the propagation of classical light through two arrays of
coupled waveguides where the impulse function can be given
in closed form via the phase formalism.
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