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We use the propagation of a conveniently shaped Gaussian beam in a GRIN media to mimic a quantum cavity filled
with a Kerr medium. This is attained by introducing a second-order correction to the paraxial propagation of the
beam. An additional result is that a Gaussian beam propagating in GRIN media may split into two Gaussian beams,
corresponding to the generation of superposition of coherent states (Schrödinger cat states) in the cavity filled with
the Kerr medium. © 2014 Optical Society of America
OCIS codes: (260.2710) Inhomogeneous optical media; (160.2710) Inhomogeneous optical media; (350.5500)

Propagation; (270.0270) Quantum optics.
http://dx.doi.org/10.1364/OL.39.006158

Conventional applications of aGRINmediumare focusing
and image formation [1]. Additionally, it has been estab-
lished that a GRIN medium can support invariant propa-
gationmodes, either in the paraxial [2] or the non-paraxial
domains [3]. In a different context, light propagation in a
GRIN medium can be employed as a form of optical emu-
lation of certain quantum phenomena. An example is the
mimicking of quantum mechanical invariants by the
propagation of light through the interface of two coupled
GRIN devices [4]. Cross applications between quantum
mechanics and classic optics are common due to the fact
that the Schrödinger equation and the paraxial wave equa-
tion in classical optics are formally equivalent. One can
extend the application in order to consider not only the
paraxial regime but also the non-paraxial one, i.e., the
complete Helmholtz equation. For instance, supersym-
metric methods, common to quantum mechanics, have
been proposed in classic optics [5–7].
The generation of nonclassical states of the electromag-

netic field is a subject of much interest in quantum optics,
not only because of their fundamental implications, but
also because of possibilities of application that they con-
vey. One may mention among the several nonclassical
states found in the literature: (a) squeezed states [8],
(b) the particularly important limit of extreme squeezing;
i.e., Fock or number states [9], (c) macroscopic quantum
superpositions of quasi-classical coherent states [10] with
different mean phases or amplitudes [11], and more re-
cently, (d) nonclassical states of combined photon pairs
also called N00N states [12,13].
It is worth to note, however, that both Schrödinger and

Helmholtz equations are linear equations. However, in
quantum optics, we have to consider multiphoton proc-
esses, which appear as powers of creation and annihila-
tion operators (related to the quantized electromagnetic
field) in the Hamiltonian.
In this work, we show how to mimic a (quantum) Kerr

medium by propagation of classical light through a quad-
ratic GRIN medium. This is performed considering a
second-order correction to the paraxial propagation of
light in the medium. In particular, the solutions for the
non-paraxial wave equation produce higher order terms

similar to the Hamiltonians proposed by Yurke and Stoler
[11] to generate Schrödinger cat states.

We also predict the splitting of a Gaussian profile in
two Gaussian functions. To the best of our knowledge,
this is a new effect when one considers the classical
propagation of light in quadratic GRIN media.

We start with a quick survey of the solution of the
Helmholtz equation for a quadratic GRIN medium in
terms of eigenfunctions. The Helmholtz equation for a
GRIN medium is
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where k is the wave number, and n�x; y� is the variable
refraction index. For a quadratic medium, the refraction
index can be written as n2�x; y� � n2

0�1 − g2xx2 − g2yy2�,
where gx and gy are the gradient indexes in the x and in
the y directions, respectively. So, for a quadratic depend-
ence in the index of refraction, the Helmholtz equation is
expressed

−

∂2E
∂z2

�
�
∂2

∂x2
� ∂2

∂y2
� κ2 − η2xx2 − η2yy2

�
E; (2)

where we have defined κ � n0k, ηx � n0gxk, and
ηy � n0gyk. Introducing the number operators n̂x and
n̂y, such that ηξ�n̂ξ � 1∕2� � 1

2 ��−i� ddξ�2 � η2ξξ
2��ξ � x; y�,

the previous equation can be cast as [14]

∂2E
∂z2

� −�κ2 − ηx�2n̂x � 1� − ηy�2n̂y � 1��E; (3)

whose formal solution may be written as

E�x; y; z� � e−iz
����������������������������������������
κ2−ηx�2n̂x�1�−ηy�2n̂y�1�

p
E�x; y; 0�: (4)

Any arbitrary boundary condition E�x; y; 0� can be ex-
panded as
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ξ � x; y; n � 0; 1; 2;…; (6)

are the eigenfunctions of the number operators n̂x and n̂y

[15], Hn�ζ� are the Hermite polynomials, and cn;m are the
expansion coefficients.
Considering the explicit expansion (5) and applying

the propagation operator [Eq. (4)], we arrive to the
propagated field

E�x;y;z��
X∞
n�0

X∞
m�0

cn;mφn�x�φm�y�

×exp
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q �
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Now, to model a quantum Kerr medium, we use the
Hamiltonian from [11]

H � ωâ†â� μ�â†â�s; (8)

to generate superpositions of coherent states of a quan-
tized system. As we already mention in the introduction,
this Hamiltonian involves multiphoton processes and the
creation and annihilation operators of the electromag-
netic fields appears to powers. Therefore, when having
powers of these operators, we reach the multiphoton
processes regime. As a particular case, when s � 2, we
are dealing with a quantum Kerr medium. In the above
equation, ω is the field frequency, and for s � 2, μ is the
Kerr parameter. Of course, what we want to do is to solve
the Schrödinger equation (we set ℏ � 1)

i
∂jψ�t�i

∂t
� Ĥjψ�t�i; (9)

which is a linear equation. If we solve it for an initial
coherent state [16]
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jαj2
2
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we obtain

jψ�t�i � e−it�ωâ
†â�μ�â†â�s�jαi

� e−
jαj2
2
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Fo the particular value of time t � π∕μ, the second expo-
nential in Eq. (11) becomes �−1�ms � �−1�m, and a coher-
ent state is recovered. On the other hand, for the time
t � π∕2μ, a superposition of coherent states is achieved
[11], the so called Schrödinger cat states.

We can model the quantum Kerr medium by using
Eq. (4), developing the square root as a Taylor series,
and staying to second order in 1∕κ2, obtaining the
approximation

E�x; y; z� ≈ exp
	
−i~κz

�
1 −

ηxn̂x � ηyn̂y

~κ2

−

�ηxn̂x � ηyn̂y�2
2~κ4

�

E�x; y; 0�; (12)

with ~κ2 � κ2 − �ηx � ηy�.
Note that for s � 2, the exponential operator in

Eq. (11) presents both linear and squared number oper-
ators, as occurs in Eq. (12). This formal similitude allows
us to mimic classically the quantum interaction of light
with matter that may be effectively modeled by a Kerr
medium.

Without loss of generality and for the sake of simplic-
ity, we consider the one-dimensional case, i.e., ηy � 0; so,
we have from (12),

E�x; z� � exp
	
−i~κz

�
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ηxn̂x
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2~κ4

�

E�x; 0�: (13)

Now we assume that the boundary condition E�x; 0� has
the form of the coherent state

ψα�x� � e−
jαj2
2
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p φm�x�; (14)

already defined in Eq. (10). Using the Hermite polyno-
mials exponential generating function exp�2xt − t2� �P∞

n�0 Hn�x� tnn! [15,17], valid for x and t complexes, it is
very easy to see that ψα�x� is the Gaussian function [18],
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; (15)

whereR�α� and I�α� are the real and imaginary part of α,
respectively.

Within the established conditions, it is now straightfor-
ward to obtain the propagated field as

E�x; z� � e−i~κze−
jαj2
2

X∞
m�0

αm������
m!

p exp�iz�ηm� χm2��φm�x�;

(16)

with η � ηx∕~κ and χ � η2x∕2~κ3.
We note that in the paraxial case, where the quadratic

term in the exponential of Eq. (16) is neglected, E�x; z� is
periodic in z with period pz � 2π∕η. However, as it is
shown below, such periodicity is also exhibited by the
field E�x; z�, at least approximately, under non-paraxial
conditions.

Comparing the propagation operator in Eq. (13) with
the evolution operator in Eq. (11), it is noted that
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μt corresponds to zχ. Therefore, the superposition of two
coherent states in the quantum Kerr medium can be
emulated in the quadratic GRIN device propagating the
Gaussian field ψα to a distance zs � π

2χ, and a revival
of this field will occur at the distance zr � π

χ. Let us verify
these predictions.
For zs � π

2χ, we have

E�x; π∕2χ� � e−i~κπ∕2χe−
jαj2
2

X∞
m�0

αm������
m!

p eiπηm∕2χeiπm
2∕2φm�x�:

(17)

Next, we split the sum above into even and odd terms, we
employ the identities �eiπ∕2�4m2 � 1 and �eiπ∕2�4m2�4m�1 �
i, together with Eq. (14), and rearranging terms, we
finally obtain

E�x;π∕2χ� � e−i~κπ∕2χ
�
1� i
2

ψαeiηπ∕2χ �x��
1− i
2

ψ
−αeiηπ∕2χ �x�

�
;

(18)

i.e., the superposition of two Gaussian coherent states.
Following a procedure similar to the previous one, we

get that for zr � π∕χ the field (16) can be expressed as

E�x; π∕χ� � e−i~kπ∕χψ
−αeiηπ∕χ �x�; (19)

that is a coherent state multiplied by a phase.
To illustrate these results, we consider a coherent state

with α � 2 and k � 8.7 × 106 m−1, propagating in a GRIN
medium with parameters n0 � 1.5 and gx � 10 mm−1. In
this case, the splitting and the revival fields appear at dis-
tances zs � 40.95 cm and zr � 81.90 cm, respectively.
The normalized intensity profiles of the split and revival
fields are depicted in Fig. 1.

The intensity of the field E�x; z�, Eq. (16), obtained for
the previously considered parameters, is displayed in
Fig. 2, for three different intervals of z, whose length
is equal to the period pz. For the considered parameters
this period is pz � 0.628 mm. The first interval, starting
at z � 0, presents a field that is also predicted by the par-
axial approximation. The second and third intervals, cen-
tered respectively at z � zs and z � zr , correspond to the
split and revival fields, that have been predicted in
Eqs. (18) and (19). The transverse field in the revival zone
coincides with the field at z � 0 only at the plane z � zr .
It is noted that the paraxial approximation predicts that
the field evolution in the splitting and revival intervals of
Fig. 2, are identical to that in the first interval.

The condition for the validity of the approximation in
Eq. (13) is 2gx∕kn0 − gx ≪ 1. The parameters chosen in
the previous numerical illustration allow the fulfillment
of such approximation. Indeed, the computation of the
split and revival fields, using the one dimensional version
of the exact formula [Eq. (7)], generates results almost
identical to the ones shown in Figs. 1 and 2. The chosen
value of k, in the visible spectral domain, minimizes the
interference terms that arise squaring (18).

Fig. 1. Normalized intensity of (a) the splitting and (b) the
revival fields for n0 � 1.5, gx � 10 mm−1, k � 8.7 × 106 m−1

and α � 2.

Fig. 2. Intensity profiles at different intervals of z, of length pz,
obtained for n0 � 1.5, gx � 10 mm−1, k � 8.7 × 106 m−1 and
α � 2. The intervals are centered at (a) z � pz∕2, (b) z � zs,
and (c) z � zr .
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When the condition 2gx∕kn0 − gx ≪ 1 is not fulfilled,
the split and revival fields do not appear. An example
of this situation occurs for an initial coherent state with
α � 2 and k � 105 m−1 propagating in a medium with the
parameters n0 � 1.5 and gx � 10 mm−1. The normalized
intensity profile at the splitting distance (zs � 4.25 mm in
this case), shown in Fig. 3, does not correspond to the
predicted field in Eq. (18).
We conclude, that by propagating light though a GRIN

medium with transverse quadratic variation, we have
been able to model the quantum interaction of a quan-
tized field with a Kerr medium. We have achieved this
by writing the Helmholtz equation in operator terms,
and approximating the solution up to second order. The
“Hamiltonian” that we produced was exactly the Kerr
medium Hamiltonian used in quantum optics that gener-
ates superpositions of coherent states of the quantized
field.
We have also shown the splitting of a Gaussian field,

with the appropriate width and position, during its propa-
gation in a quadratic GRIN media. According to data in
different papers [19–21], the values of the gradient
parameter g, for conventional GRIN devices operating in
the visible domain, are in the range from 0.1 to
10.0 mm−1. In the example discussed above, where we
employed the gradient parameter g � 10 mm−1 and k �
8.7 × 106 m−1 (λ � 722 nm) the splitting distance is
40.95 cm. Therefore, the experimental verification of
the splitting effect could be implemented under certain
limit conditions employing present GRIN technology.
The splitting distance can be reduced increasing the
wavelength without affecting the validity of Eq. (13).
For instance, employing α � 1 and λ � 1.57 μm for the
initial coherent state, and n0 � 1.5 and gx � 10 mm−1

for the parameters of the medium, the splitting distance

is 18.8 cm. It should be pointed out that the numerical
simulation of the exact solution, Eq. (4) shows the same
behavior as the approximation that we have used (one
step further than the paraxial approximation); so the
splitting of a Gaussian field, when the appropriated
parameters are chosen, also appears in the exact case.
However, there exists the possibility that higher order
multiphoton processes may be simulated via higher order
terms in the approximation; this will be treated
elsewhere.

Finally, we should note that the production of super-
positions of coherent states of light is degraded by an
environment [22]; however, in the classical case we
studied, there are no sources of noise.
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Fig. 3. Normalized intensity at z � zs for n0 � 1.5,
k � 105 m−1, gx � 10 mm−1 and α � 2.
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