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Optical simulation of Majorana physics

B. M. Rodrı́guez-Lara* and H. M. Moya-Cessa
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(Received 4 October 2013; published 31 January 2014)

We show a procedure to classically simulate the Majorana equation in 1 + 1 dimensions via two one-
dimensional photonic crystals. We use a decomposition of the Majorana equation into two Dirac equations
and propose an approach that uses a bichromatic refractive index distribution and nearest-neighbor couplings of
the type found in Glauber-Fock lattices. This allows us to escape the restriction of staying near the Brillouin zone
imposed by the classical simulation of Dirac dynamics with bichromatic lattices. Furthermore, it is possible to
simulate the evolution of Gaussian wave packets under the Majorana-Dirac equation with light impinging only
into the first waveguide of our bichromatic-Glauber-Fock lattice.
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I. INTRODUCTION

Arrays of coupled photonic waveguides have been excellent
classical simulators of quantum and relativistic physics [1,2].
In particular, they have allowed one of the first visualizations
of Dirac physics phenomena like Zitterbewegung [3], Klein
tunneling [4], and Dirac solitons [5] in tabletop experiments.
The Majorana equation is a Lorentz covariant generalization of
the Dirac equation [6,7]. It is the first relativistically invariant
theory and the first application of the infinite-dimensional
representations of the Lorentz group [8]. If supplemented by
the Majorana condition of charge invariance, i.e., Majorana
fermions, it is equivalent to the Dirac equation. In modern
gauge theories, chiral spinors answer to two-component
Majorana equations [9,10]. This has rekindled the interest
in Majorana dynamics, and recently, both a procedure to
implement nonphysical operations related to Majorana physics
[11] and a scheme to simulate the Majorana equation [12]
with trapped ions setups have been proposed. These proposals
bring Majorana physics into the quantum optics laboratory,
following the pioneering work in the quantum simulation of
relativistic Dirac physics, e.g., Zitterbewegung [13,14] and the
Klein paradox [15,16].

Here we go beyond the quantum optics realizations and
show that it is possible to simulate Majorana physics by prop-
agation of classical light in one-dimensional photonic crystals.
For this reason we will present the quantum simulation of
the Majorana equation in 1 + 1 dimensions in the following
section to provide the basic set of transformations that will
move us to and from its classical simulation. Then, we will
propose a photonic analog in the form of two one-dimensional
photonic crystals that simulate the Majorana dynamics via
the propagation of two initial light distributions for each
one. In our proposal we use a combination of experimentally
demonstrated bichromatic [3] and Glauber-Fock [17] lattices.
This bichromatic-Glauber-Fock lattice allows us to evade the
restriction of staying near the Brillouin zone that appears
when using bichromatic lattices to classically simulate Dirac
physics. Our proposal imposes no restriction and manages to
classically simulate the evolution of Gaussian wave functions
under Dirac dynamics by a single beam of light impinging
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the first waveguide of the array. Finally, we will show that by
exploiting the quantum-classical analog it is straightforward
to construct the impulse functions of our lattices.

II. QUANTUM SIMULATION OF MAJORANA PHYSICS

One of us has been part of a proposal to implement a
quantum simulation of the Majorana equation in a trapped-ion
setup [12]. Here, we give a brief summary of the topic in order
to provide the basis to construct a classical analog. We start
from the Majorana equation [6,7],

iγ μ∂μψ = mMψc, (1)

where the symbol ψc stands for charge conjugation of the
spinor ψ , ψc ≡ γ 2ψ∗, and γμ are the Dirac matrices, the
symbol ∂μ is shorthand notation for partial derivation with
respect to μ, the superscript asterisk represents complex
conjugation, mM is the Majorana mass, and we have set
� = c = 1. In 1 + 1 dimensions it is possible to rewrite it
as

i∂tψ = σ̂xp̂qψ − imσ̂yψ
∗, (2)

where σ̂i , with i = x,y,z, are the Pauli matrices, p̂q is the
dimensionless momentum, m stands for the modified Majorana
mass in units of momentum, and the Majorana field is given
as a two-dimensional complex vector, ψ = (ψ (1),ψ (2)). Then,
we can combine the field and its charge conjugate,

i∂t (ψ + ψ∗) = σ̂xp̂q(ψ + ψ∗) + imσ̂y(ψ − ψ∗), (3)

i∂t (ψ − ψ∗) = σ̂xpq(ψ − ψ∗) − imσ̂y(ψ + ψ∗), (4)

to create and extended real Hilbert space, where we can write
the Majorana equation as a Schrodinger equation,

i∂t� = [(12 ⊗ σ̂x)p̂q − m(σ̂x ⊗ σ̂y)]�, (5)

with the real four-element field given by � =
(Re(ψ (1)),Re(ψ (2)),Im(ψ (1)),Im(ψ (2))), which is related
to the Majorana field via the transformation ψ = M̂�,
with M̂ = (12,i12), where the symbol 12 stands for the
unit matrix in dimension 2. Note that the unitary operation
Û = e−iπσ̂y/4 ⊗ e−iπσ̂x/4 providing the basis � = Û�, such
that we can write the original Majorana field as ψ = M̂Û�,
yields the following Schrödinger equation related to the
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Majorana equation:

i∂t� = [(12 ⊗ σ̂x)pq + m(σ̂z ⊗ σ̂z)]�. (6)

At this point, we can propose a form for our four-vector and
realize that this Schrödinger representation for the Majorana
equation leads to two uncoupled Dirac-like equations with
positive and negative mass,

i∂tφ± = [−iσ̂xp̂q ± mσ̂z]φ±, (7)

where φ+ = (�(1),�(2)) and φ− = (�(3),�(4)), such that � =
(φ+,φ−).

III. PHOTONIC LATTICE ANALOG

Starting from the separation of the Majorana equation into
two Dirac equations in (7), we can follow the idea in [18]
and compare the dispersion relation for a bichromatic lattice
with the energy-momentum dispersion relation of the Dirac
equation and conclude that the Majorana Hamiltonian can
be simulated classically by two bichromatic refractive index
lattices described by the differential equation set

− i∂zEj = [n ± (−1)jm]Ej + Ej+1 + Ej−1, (8)

as long as the simulation stays near the boundary of the
Brillouin zone. Also, we have introduced a bias refractive
index n that only introduces an overall phase factor.

We do not want such a strong restriction between the mo-
mentum of the simulated wave packet and the characteristics
of the bichromatic lattice. In order to get rid of this restraint,
we map the adimensional linear momentum operator to a
combination of bosonic creation (annihilation) operators â†

(â),

p̂q = i√
2

(â† − â). (9)

Then, we can rewrite the two uncoupled Dirac equations that
quantum simulate the Majorana equation as a Schrödinger
equation with effective Hamiltonians:

H± = 1√
2

(â† + â)σ̂x ± mσ̂z, (10)

after a π/2 rotation around the â†â axis, R̂ = eiπâ†â/2,
providing a new basis ϕ such that φ = R̂ϕ. It is straightforward
to notice that (10) is equivalent to the Rabi Hamiltonian [19]
with null field frequency. Thus, we can set up a photonic lattice
analog following previous work on the classical simulation of
the Rabi Hamiltonian [20,21]. In summary, if we split the
corresponding Hilbert space into two parity subspaces given
by

{| + ,j 〉} = {|g,0〉,|e,1〉,|g,2〉, . . .}, (11)

{| − ,j 〉} = {|e,0〉,|g,1〉,|e,2〉, . . .}, (12)

we can write the evolution of any given initial state |ϕ±,±〉 =∑
j E±,±,j | ± ,j 〉, where the first subindex is related to the

positive (negative) mass Hamiltonian and the second is related
to the positive (negative) parity, as the vector differential set

i∂tE±,± = H±,±E±,±, (13)

where the vector of amplitudes is given by Ea,b =
(Ea,b,0,Ea,b,1, . . .) and the elements of the four matrices
describing the dynamics reduce to two matrices as

(H+,+)j,k = (H−,−)j,k (14)

= −m(−1)j δj,k +
√

k

2
δj+1,k +

√
j

2
δj−1,k, (15)

(H+,−)j,k = (H−,+)j,k (16)

= m(−1)j δj,k +
√

k

2
δj+1,k +

√
j

2
δj−1,k. (17)

By making the change t → z we obtain, up to a constant
phase factor, a differential set describing two photonic lattices
where the individual refractive indices are bichromatic [22]
and the nearest-neighbor couplings go as those in Glauber-
Fock photonic lattices [23,24]. It is straightforward to realize
that the magnitude of the effective mass m will provide three
dynamics regimes: m � 1/

√
2, m ∼ 1/

√
2, and m 
 1/

√
2.

Before advancing further, we want to discuss the meaning
of light impinging the j th waveguide in one of our photonic
lattices, which, after dropping two of the subindices referring
to the parity and the mass sign, is equivalent to writing

|ψj (0)〉 = |j 〉 (18)

=
∫

dq|q〉�j (q), (19)

with

�j (q) ≡ 〈q|j 〉 (20)

= 1√
2j j !

(
1

π

)1/4

e−q2/2Hj (q), (21)

where Hn(x) is the nth Hermite polynomial. In other words,
a beam of light impinging just the first waveguide of the
array is equivalent to an initial Gaussian wave function in
dimensionless canonical space, �0(q) = e−q2/2/π1/4. Light
impinging just the j th waveguide will simulate an initial wave
function in canonical space with a j th Hermitian-Gaussian
distribution. Any given initial wave function in dimensionless
canonical space ψ(q) can be constructed from an adequate
superposition of classical fields impinging the photonic crystal,

ψ(q) =
∑

j

Ej (0)�j, (22)

where the initial field amplitudes at each waveguide Ej (0)
correspond to the decomposition of the initial wave function
in the orthonormal basis provided by (21),

Ej (0) =
∫

dqψ(q)�∗
j (q). (23)

Note that this has to be done for each set of initial conditions
to be propagated in each photonic crystal. Figure 1 shows
the numerical propagation of a Gaussian wave packet in
canonical space �0 simulated by a beam of light impinging the
first waveguide when the effective mass belongs to different
regimes: m = 0.1/

√
2 [Fig. 1(a)], m = 1/

√
2 [Fig. 1(b)], and

m = 10/
√

2 [Fig. 1(c)]. Note that for an initial Gaussian
packet, as the effective mass becomes negligible, m → 0,
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FIG. 1. (Color online) Time evolution of the modulus squared of
an initial Gaussian wave packet, �0(q) = e−q2/2/π 1/4, simulated by
the propagation of light impinging the first waveguide of an array
of photonic waveguides described by the matrix H+,+ or H−,− with
the following effective masses: (a) m = 0.1/

√
2, (b) m = 1/

√
2, and

(c) m = 10/
√

2.

the amplitude distribution will become closer to a Poisson
distribution with mean and variance given by t2/2, ψ(q,t) =∑

j e−t2/4(it)j /
√

j ! [23], while in the complete opposite case,
m → ∞, the amplitude distribution will become propagation
invariant. With our classical simulation we have direct access
to the center of mass of the intensity distribution for variable
effective-mass parameters. Please be aware that in our simula-
tion the center of mass for the intensity does not coincide with
the center of mass of the wave function in canonical space,

qcm =
∑

k

√
k + 1

2
[E∗

k (t)Ek+1(t) + E∗
k+1(t)Ek(t)], (24)

and furthermore, in order to study the center of mass under the
original dynamics we have to account for all the rotations to
transform back to the original frame, xcm; e.g., for the Dirac
dynamics part of our classical simulation,

xcm =
∑

k

i

√
k + 1

2
[E∗

k (t)Ek+1(t) − E∗
k+1(t)Ek(t)]. (25)

Figure 2 shows the evolution of the center of mass
of an initial Gaussian wave packet under Dirac dy-
namics for different effective masses, m = 0.1/

√
2

[Fig. 2(a)], m = 1/
√

2 [Fig. 2(b)], and m = 10/
√

2 [Fig.
2(c)], recovered from the classical simulation equivalent to
the propagation of a beam impinging the first waveguide of
the photonic crystal.

We are also interested in providing an impulse function for
our photonic crystal. For this reason we start from the matrix
differential set (13), where the matrix Ha,b is constant and
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FIG. 2. Evolution of the center of mass for an initial Gaussian
wave packet, �0(q) = e−q2/2/π 1/4, under Dirac dynamics recovered
from the propagation of an initial beam impinging the first waveguide
in an array of photonic waveguides described by the matrix H+,+
or H−,− related to effective-mass parameters described in Fig. 1:
(a) m = 0.1/

√
2, (b) m = 1/

√
2, and (c) m = 10/

√
2.

allows us to write the time propagator as

U (t) = e−iHa,bt (26)

= cos �(q̂)t − i

�(q̂)
sin �(q̂)tHa,b, (27)

with

�(q̂) =
√

m2 + 1
2 (â + â†)2 (28)

=
√

m2 + q̂2, (29)

where q̂ is the dimensionless canonical position operator. This
expression is related to the dispersion relation of the photonic
lattice and the energy states of the Dirac equation. These results
and the action of the matrix Ha,b over the components of
the parity basis allow us to calculate the impulse function
(field amplitude) at the kth waveguide for an input in the j th
waveguide of the corresponding photonic lattice; for example,
for the waveguide array described by the matrices H+,+ and
H−,− we can write the impulse function as

I
(+,+)
j,k = I

(−,−)
j,k (30)

=
∫

dq

{
cos �(q)t − i[−m(−1)j + q]

�(q)

× sin �(q)t

}
�∗

k (q)�j (q). (31)

Comparing this expression to numerical propagation in the
photonic lattice shows good agreement between the results.
It is straightforward to use the impulse function to calculate
the propagation of any initial light field simulating any given
initial Majorana field.
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IV. CONCLUSIONS

We have shown a scheme to classically simulate Majo-
rana physics in 1 + 1 dimensions with two one-dimensional
photonic crystals. Our approach is based on the quantum sim-
ulation of the Majorana equation through two Dirac equations
with positive or negative mass. We have proposed a way to
classically simulate the Dirac equation combining two one-
dimensional photonic crystals that have already been produced
experimentally; one is the bichromatic photonic lattice, and the
other is the Glauber-Fock photonic lattice. Each Dirac equation
has an optical analog in a set of two bichromatic-Glauber-Fock
lattices, i.e., a waveguide array where the refractive index
of individual waveguides alternates and the coupling goes

as the square root of the waveguide number. We have also
demonstrated that instead of using four photonic lattices, it
is enough to use two waveguide arrays with the propagation
of two adequate initial conditions in each one to simulate the
Majorana equation. Finally, by using the equivalence between
the quantum and classical simulations we were able to give
the impulse function of the photonic lattices. These impulse
functions allow us to calculate the propagation of any initial
light distribution simulating any given Majorana field.
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[4] F. Dreisow, R. Keil, A. Tünnermann, S. Nolte, S. Longhi, and

A. Szameit, Europhys. Lett. 97, 10008 (2012).
[5] T. X. Tran, S. Longhi, and F. Biancalana, Ann. Phys. (N.Y.) 340,

179 (2014).
[6] E. Majorana, Nuovo Cimento 9, 335 (1932).
[7] E. Majorana, Nuovo Cimento 14, 171 (1937).
[8] D. M. Fradkin, Am. J. Phys. 34, 314 (1966).
[9] A. Aste, Symmetry 2, 1776 (2010).

[10] P. B. Pal, Am. J. Phys. 79, 485 (2011).
[11] J. Casanova, C. Sabı́n, J. León, I. L. Egusquiza, R. Gerritsma,

C. F. Roos, J. J. Garcı́a-Ripoll, and E. Solano, Phys. Rev. X 1,
021018 (2011).

[12] C. Noh, B. M. Rodrı́guez-Lara, and D. G. Angelakis, Phys. Rev.
A 87, 040102 (2013).

[13] L. Lamata, J. Leon, T. Schatz, and E. Solano, Phys. Rev. Lett.
98, 253005 (2007).

[14] R. Gerritsma, G. Kirchmair, F. Zahringer, E. Solano, R. Blatt,
and C. F. Roos, Nature (London) 463, 68 (2010).

[15] J. Casanova, J. J. Garcı́a-Ripoll, R. Gerritsma, C.
F. Roos, and E. Solano, Phys. Rev. A 82, 020101
(2010).

[16] R. Gerritsma, B. P. Lanyon, G. Kirchmair, F. Zähringer,
C. Hempel, J. Casanova, J. J. Garcı́a-Ripoll, E. Solano,
R. Blatt, and C. F. Roos, Phys. Rev. Lett. 106, 060503
(2011).

[17] R. Keil, A. Perez-Leija, P. Aleahmad, H. Moya-Cessa, S. Nolte,
D. N. Christodoulides, and A. Szameit, Opt. Lett. 37, 3801
(2012).

[18] S. Longhi, Opt. Lett. 35, 235 (2010).
[19] D. Braak, Phys. Rev. Lett. 107, 100401 (2011).
[20] A. Crespi, S. Longhi, and R. Osellame, Phys. Rev. Lett. 108,

163601 (2012).
[21] B. M. Rodrı́guez-Lara, F. Soto-Eguibar, A. Z. Cárdenas, and H.

M. Moya-Cessa, Opt. Express 21, 12888 (2013).
[22] B. M. Rodrı́guez-Lara and H. Moya-Cessa, Phys. Scr. 87,

038116 (2013).
[23] B. M. Rodrı́guez-Lara, Phys. Rev. A 84, 053845 (2011).
[24] A. Perez-Leija, R. Keil, A. Szameit, A. F. Abouraddy, H. Moya-

Cessa, and D. N. Christodoulides, Phys. Rev. A 85, 013848
(2012).

015803-4

http://dx.doi.org/10.1002/lpor.200810055
http://dx.doi.org/10.1002/lpor.200810055
http://dx.doi.org/10.1002/lpor.200810055
http://dx.doi.org/10.1002/lpor.200810055
http://dx.doi.org/10.1007/s00340-011-4628-7
http://dx.doi.org/10.1007/s00340-011-4628-7
http://dx.doi.org/10.1007/s00340-011-4628-7
http://dx.doi.org/10.1007/s00340-011-4628-7
http://dx.doi.org/10.1103/PhysRevLett.105.143902
http://dx.doi.org/10.1103/PhysRevLett.105.143902
http://dx.doi.org/10.1103/PhysRevLett.105.143902
http://dx.doi.org/10.1103/PhysRevLett.105.143902
http://dx.doi.org/10.1209/0295-5075/97/10008
http://dx.doi.org/10.1209/0295-5075/97/10008
http://dx.doi.org/10.1209/0295-5075/97/10008
http://dx.doi.org/10.1209/0295-5075/97/10008
http://dx.doi.org/10.1016/j.aop.2013.10.017
http://dx.doi.org/10.1016/j.aop.2013.10.017
http://dx.doi.org/10.1016/j.aop.2013.10.017
http://dx.doi.org/10.1016/j.aop.2013.10.017
http://dx.doi.org/10.1007/BF02959557
http://dx.doi.org/10.1007/BF02959557
http://dx.doi.org/10.1007/BF02959557
http://dx.doi.org/10.1007/BF02959557
http://dx.doi.org/10.1007/BF02961314
http://dx.doi.org/10.1007/BF02961314
http://dx.doi.org/10.1007/BF02961314
http://dx.doi.org/10.1007/BF02961314
http://dx.doi.org/10.1119/1.1972947
http://dx.doi.org/10.1119/1.1972947
http://dx.doi.org/10.1119/1.1972947
http://dx.doi.org/10.1119/1.1972947
http://dx.doi.org/10.3390/sym2041776
http://dx.doi.org/10.3390/sym2041776
http://dx.doi.org/10.3390/sym2041776
http://dx.doi.org/10.3390/sym2041776
http://dx.doi.org/10.1119/1.3549729
http://dx.doi.org/10.1119/1.3549729
http://dx.doi.org/10.1119/1.3549729
http://dx.doi.org/10.1119/1.3549729
http://dx.doi.org/10.1103/PhysRevX.1.021018
http://dx.doi.org/10.1103/PhysRevX.1.021018
http://dx.doi.org/10.1103/PhysRevX.1.021018
http://dx.doi.org/10.1103/PhysRevX.1.021018
http://dx.doi.org/10.1103/PhysRevA.87.040102
http://dx.doi.org/10.1103/PhysRevA.87.040102
http://dx.doi.org/10.1103/PhysRevA.87.040102
http://dx.doi.org/10.1103/PhysRevA.87.040102
http://dx.doi.org/10.1103/PhysRevLett.98.253005
http://dx.doi.org/10.1103/PhysRevLett.98.253005
http://dx.doi.org/10.1103/PhysRevLett.98.253005
http://dx.doi.org/10.1103/PhysRevLett.98.253005
http://dx.doi.org/10.1038/nature08688
http://dx.doi.org/10.1038/nature08688
http://dx.doi.org/10.1038/nature08688
http://dx.doi.org/10.1038/nature08688
http://dx.doi.org/10.1103/PhysRevA.82.020101
http://dx.doi.org/10.1103/PhysRevA.82.020101
http://dx.doi.org/10.1103/PhysRevA.82.020101
http://dx.doi.org/10.1103/PhysRevA.82.020101
http://dx.doi.org/10.1103/PhysRevLett.106.060503
http://dx.doi.org/10.1103/PhysRevLett.106.060503
http://dx.doi.org/10.1103/PhysRevLett.106.060503
http://dx.doi.org/10.1103/PhysRevLett.106.060503
http://dx.doi.org/10.1364/OL.37.003801
http://dx.doi.org/10.1364/OL.37.003801
http://dx.doi.org/10.1364/OL.37.003801
http://dx.doi.org/10.1364/OL.37.003801
http://dx.doi.org/10.1364/OL.35.000235
http://dx.doi.org/10.1364/OL.35.000235
http://dx.doi.org/10.1364/OL.35.000235
http://dx.doi.org/10.1364/OL.35.000235
http://dx.doi.org/10.1103/PhysRevLett.107.100401
http://dx.doi.org/10.1103/PhysRevLett.107.100401
http://dx.doi.org/10.1103/PhysRevLett.107.100401
http://dx.doi.org/10.1103/PhysRevLett.107.100401
http://dx.doi.org/10.1103/PhysRevLett.108.163601
http://dx.doi.org/10.1103/PhysRevLett.108.163601
http://dx.doi.org/10.1103/PhysRevLett.108.163601
http://dx.doi.org/10.1103/PhysRevLett.108.163601
http://dx.doi.org/10.1364/OE.21.012888
http://dx.doi.org/10.1364/OE.21.012888
http://dx.doi.org/10.1364/OE.21.012888
http://dx.doi.org/10.1364/OE.21.012888
http://dx.doi.org/10.1088/0031-8949/87/03/038116
http://dx.doi.org/10.1088/0031-8949/87/03/038116
http://dx.doi.org/10.1088/0031-8949/87/03/038116
http://dx.doi.org/10.1088/0031-8949/87/03/038116
http://dx.doi.org/10.1103/PhysRevA.84.053845
http://dx.doi.org/10.1103/PhysRevA.84.053845
http://dx.doi.org/10.1103/PhysRevA.84.053845
http://dx.doi.org/10.1103/PhysRevA.84.053845
http://dx.doi.org/10.1103/PhysRevA.85.013848
http://dx.doi.org/10.1103/PhysRevA.85.013848
http://dx.doi.org/10.1103/PhysRevA.85.013848
http://dx.doi.org/10.1103/PhysRevA.85.013848



