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We study an intensity-dependent quantum Rabi model that can be written in terms of SU�1; 1� group elements and
is related to the Buck–Sukumar model for the Bargmann parameter k � 1∕2. The spectrum seems to present
avoided crossings for all valid parameter sets and, thus, may be integrable. For a degenerate qubit, the model
is soluble, and we construct an unbroken supersymmetric partner for it. We discuss the classical simulation
of the general model in photonic lattices and show that it presents quasi-periodic reconstruction for a given initial
state and parameter set. © 2014 Optical Society of America
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1. INTRODUCTION
The Jaynes–Cummings model (JCM) [1],

ĤJC � ωn̂� ω0

2
σ̂z � g�âσ̂� � â†σ̂

−

�; (1)

is a theoretical model derived from the minimal coupling [2]
between a neutral two-level atom, described by frequency
transition ω0 and Pauli matrices σ̂j , and a quantized cavity field
mode, described by the frequency ω and the creation (annihi-
lation) operators â† (â), related to the one-atom maser of
cavity-quantum-electrodynamics (cavity-QED) [3,4]; it can
also describe the dynamics of a trapped two-level ion in
trapped-ion-QED [5] and the coupling of a superconducting
qubit interacting with a microwave resonator in circuit-
QED [6,7]. The Buck–Sukumar model (BSM) [8], where the
coupling between a two-level system and a quantized field
depends on the intensity of the field

ĤBS � ωn̂� ω0

2
σ̂z � g

�
â

����̂
n

p
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����̂
n

p
â†σ̂

−

�
; (2)

is a clever theoretical modification of the JCM that leads to a
closed-form analytic solution. Its physical realization in the
quantum optics laboratory may not be feasible, as it requires
a trapped-ion setup driven by a large superposition of field
modes [9,10], but it may be classically simulated in arrays
of coupled waveguides [11]. Despite a purely theoretical ori-
gin, the BSM [8] and its generalization for qubit ensembles [12]
have provided analytically tractable models showing periodic
decay and revival in the atomic excitation energy [8,12], mean
photon number [13], and field squeezing parameters [14] that
have attracted the attention of the quantum optics community.
It is also well known that the field in the BSM can be described
by a su�1; 1� algebra [14–16] and that it is possible to interpo-
late between the JCM and the BSM by choosing a particular
q-deformed algebra for the field [17]. The inclusion of the

so-called counter-rotating terms obviated by the rotating wave
approximation (RWA) into the BSM,

ĤRBS � ωn̂� ω0

2
σ̂z � g

�
â

����̂
n

p
�

����̂
n

p
â†
�
σ̂x; (3)

reduces the parameter range where the model is well defined
to g < ω∕2 due to the underlying su�1; 1� symmetry [16,18].

Here we are interested in an intensity-dependent quantum
Rabi Hamiltonian that is the simplest generalization of the
BSM model without the RWA,

Ĥ � ωn̂� ω0

2
σ̂z � g

� ���������������
n̂� 2k

p
â� â†

���������������
n̂� 2k

p �
σ̂x; k > 0;

(4)

where a Bargmann parameter value of k � 1∕2 returns the
BSM plus counter-rotating terms. In the following, we will
show that this model can be fully written in terms of a su�1; 1�
algebra due to parity conservation, that it is possible to pro-
vide a perturbation theory solution for it in the regime where
the qubit transition is negligible, ω0 ≪ g, that a supersymmet-
ric (SUSY) partner can be given for it in this regime, and that
both the model and its isospectral partner may be classically
simulated by a semi-infinite array of coupled waveguides. In
QED, this model may be just a theoretical curiosity; never-
theless, it is an interesting curiosity because it is a solvable
model including the counter-rotating terms that are usually
neglected. Furthermore, its diagonalization with generalized
coherent states of the group SU(1,1), which seems to be valid
for just a range of parameters, brings forward what may be an
underlying issue in the definition of generalized coherent
states [19–21]. In more practical matters, the optical simula-
tion of quantum mechanical models [22,23] is changing the
way photonic integrated devices are designed [24–29], and
the classical simulation of this model provides a new set of
isospectral photonic lattices [30–32].
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2. SU(1,1) MODEL AND ITS SPECTRA
The Hamiltonian in Eq. (4) conserves parity, �Ĥ; Π̂� � 0
with Π̂ � �−1�n̂σ̂z. This allows us to define two parity subspa-
ces, fj�; jig, such that Π̂j�; ji � �j�; ji with j�; ji �
�n̂−1∕2â†σ̂x�jj0; ei and j−; ji � �n̂−1∕2â†σ̂x�jj0; gi; the states
j0; gi and j0; ei correspond to the field in the vacuum state
and the qubit in the ground or excited level, in that order.
Thus, Eq. (4) becomes the Hamiltonians

Ĥ 0
� � ωK̂0 �

ω0

2
�−1�K̂0 � g�K̂� � K̂

−

�

− ωk� ω0

2
�−1�−k; k > 0 (5)

in each parity subspace after defining K̂0 � n̂� k,
K̂� � â†

���������������
n̂� 2k

p
σ̂x, and K̂

−

� ���������������
n̂� 2k

p
âσ̂x such that they

form the SU(1,1) group, �K̂�; K̂−

� � −2K̂0 and �K̂0; K̂�� �
�K̂� [33,34]. In such a case, we can put aside the constant
terms and focus on the parity subspace Hamiltonians

Ĥ� � ωK̂0 �
ω0

2
�−1�K̂0 � g�K̂� � K̂

−

�: (6)

While in QED it may not make sense, in photonic lattices it is
useful to define two regimes where the model is soluble using
the qubit frequency as reference: (i) a weak coupling regime
where the coupling constant is negligible compared to the
qubit frequency, g ≪ ω0, where in the case g∕ω0 → 0 the
eigenstates of the model are the parity states j�; ji with
energy E�;j � ω�j � k� � ω0�−1�j�k∕2 and (ii) a deep-strong
coupling regime where the qubit frequency is negligible com-
pared to the coupling constant [35,36], g ≫ ω0, where in the
case ω0∕g → 0 the eigenstates are su�1; 1� generalized coher-
ent states, j�; ξi � S�ξ�j�; ji, with energy �ω2

− 4g2�1∕2�j � k�.
The unitary displacement is given by S�ξ� � e−ξ�K̂�−K̂−

�∕2

[37,38], with tanh ξ � 2g∕ω for our case; note that the dis-
placement parameter, ξ � arctan�2g∕ω�, restricts the cou-
pling values for this regime to g < ω∕2. At this point, we
can follow an argument identical to that found in [18] and find
that despite the fact that the modified evolution operator
Û� � e−i�Ĥ��ω0∕2�t is apparently unitary, the value of
h�; jjÛ�j�; ki diverges at any finite time for g ≥ ω∕2 and,
thus, the model seems to be valid just for values of g < ω∕2.
While we are not able to discuss a physical reason behind this
cutoff due to the artificial nature of the model, it may be re-

lated to a topological issue in the definition of generalized co-
herent states [19–21], e.g., in the case g � ω∕2, it is possible to
find an invertible transformation, eK̂� , that is not unitary but
rotates ω�K̂0 � K̂x� into K̂

−

, and, then, the eigenstates can be
produced as generalized coherent states à la Barut–Girardello
[39], K̂

−

jj; αi � αjj; αi.
In any given set of frequencies and coupling parameters,

e.g., fω;ω0; g ∈ �0;ω∕2�g, the model in the parity bases be-
comes a tridiagonal, real, symmetric, semi-infinite matrix
whose eigenvalues and eigenvectors can be approximated
by standard linear algebra methods or discussed analytically
following standard methods [40,41]. Figure 1 shows numeri-
cally calculated spectra in the positive and negative parity
subspaces for the model Hamiltonian Ĥ� as a function of
the qubit frequency. The equidistant behavior predicted for
the extremes of the weak and deep-strong coupling regimes
can already be observed. The spectra show avoided crossings
between the energies of a given parity and crossings between
energies of different parity in a similar manner as the spectra
of the quantum Rabi Hamiltonian, where integrability has
been argued on this basis [40].

3. SUPERSYMMETRY IN THE REDUCED SU
(1,1) MODEL
Let us consider the limiting case of the deep-strong coupling
regime where ω0 � 0; again, this may not make sense while
thinking of cavity-, trapped-ion-, or circuit-QED, but such a
model can be produced in photonic lattices [11] and define
the unperturbed Hamiltonian

Ĥ0 � ωK̂0 � g�K̂� � K̂
−

�: (7)

If we define a qubit-field annihilation (creation) operator
as Â � αâ� �g∕α� ���������������

n̂� 2k
p

σ̂x (Â† � αâ† � �g∕α� ���������������
n̂� 2k

p
σ̂x)

with parameter α2 � �ω�
������������������
ω2

− 4g2
p

�∕2 where the restriction
g < ω∕2 appears once more, we can write two unbroken
SUSY partners:

Â†Â � ωK̂0 � g�K̂� � K̂
−

� − k
������������������
ω2

− 4g2
q

; (8)

ÂÂ† � ω ~K0 � g� ~K� � ~K
−

� �
�
1
2
− k

� ������������������
ω2

− 4g2
q

; (9)

Fig. 1. Spectra for the positive (red solid lines) and negative (blue dashed lines) parity subspaces of the model Ĥ 0
� with k � 1∕2, that is, the BSM

plus counter-rotating terms, for variable qubit frequencyω0 with a fixed coupling parameter (a) g � 0.2ω and (b) g � 0.45ω. The insets show typical
avoided crossings.
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where the tilded operators are a different representation
of SU(1,1): ~K0 � n̂� k� 1∕2, ~K� � ���������������

n̂� 2k
p

â†σ̂x, and
~K
−

� â
���������������
n̂� 2k

p
σ̂x. Note that both partners are covered by

the initial Hamiltonian, Eq. (4), for a degenerate qubit because
~K� � â†

������������������������
n̂� 2k� 1

p
σ̂x and ~K

−

� ������������������������
n̂� 2k� 1

p
âσ̂x. The two

SUSY partners are diagonalized by the displacement S�ξ�
defined before and reduce to the following form:

S�−ξ�Â†ÂS�ξ� �
������������������
ω2

− 4g2
q

n̂; Ωj �
������������������
ω2

− 4g2
q

j; (10)

S�−ξ�ÂÂ†S�ξ� �
������������������
ω2

− 4g2
q

�n̂� 1�; Ω�p�
j �

������������������
ω2

− 4g2
q

�j� 1�;
(11)

where it is possible to realize that their spectra are identical,
Ωk � Ω�p�

k−1. A particular case of such unbroken SUSY partners
has been previously discussed for the parameter set k � 1∕2,
k � 1, ω � 1 − α2, and g � −α, with α ≠ 1 in the context of
photonic isospectral lattices [32].

4. OPTICAL SIMULATION
The optical simulation of the quantum Rabi model in arrays of
coupled waveguides inscribed by laser damage in fused silica
has been proposed and demonstrated experimentally [42].
Nonlinear quantum Rabi models are also feasible for optical
simulation [11] if care is exerted on the validity of the
Hamiltonians and the characteristics of the required lattices
[43]. To produce the lattice, we follow a standard procedure,
which in our case means inserting the general state jΨ�i �P∞

j�0 E
���
j j�; ji and the Hamiltonian Ĥ 0

� into the Schrödinger
equation and making the change of variable t → −z to obtain
the differential equation sets

−i∂zE
���
j � n���

j E���
j � γj−1E

���
j−1 � γjE

���
j�1; E

−jjj � 0: (12)

These sets describe a tight-binding photonic lattice where the
effective refractive index of the jth waveguide is given by
n���
j � ωj � ω0�−1�j∕2, up to a constant bias refractive

index shared by all waveguides, and the coupling between
neighbor jth and �j � 1�th waveguides is given by γj �
g

��������������������������������
�j � 1��j � 2k�

p
, with the Bargmann parameter k > 0 and

the restriction g < ω∕2, as discussed before. The generalities
of the optical simulation of quantum phenomena can be found
in reviews on the topic [22,23,44,45]. We want to stress that
while the theoretical quantum-optical model requires a
semi-infinite array of coupled waveguides, it is possible to
cut off the size of the array depending on the initial state
to propagate. This cutoff also helps in keeping the photonic
lattice experimentally feasible, as stronger coupling param-
eter values require closer waveguides that may prove a com-
plication in the laboratory and produce coupling between
second- or higher-order neighbors.

Note that in an optical simulation realized with a classical
field propagating through an array of coupled waveguides, it is
trivial to measure the light intensity in each waveguide at the
end of the photonic array. Thus, the mean photon number
hn̂�z�i � P

jjjE���
j �z�j2, which is equivalent to the barycenter

of the intensity, and the mean atomic excitation energy
hσ̂z�z�i �

P
j �jE���

2j�1�z�j2 − jE���
2j �z�j2�, which is equivalent to

the difference between the total intensity at odd and even

waveguides, are feasible quantum optical measurements to
be recovered by the optical simulation. Figure 2 shows the
propagation of the initial state jψ�0�i � j0; ei under the dy-
namics imposed by Ĥ 0

� as a classical simulation provided
by light impinging the zeroth waveguide of a photonic lattice
with the parameter set fω;ω0; g; kg � fω; 3ω∕4; 2ω∕5; 1∕2g and
a lattice size of 200 waveguides. Quasi-periodical ∼10π returns
to a state close to the initial state can be observed in the in-
tensity of the zeroth waveguide, jE0�z�j2, mean photon num-
ber, hn̂�z�i, and mean atomic excitation energy, hσ̂z�z�i. This is
an interesting phenomenon that we were not expecting in the
model for such a high coupling parameter and should be
probed in the future.

It is important to note that the proposed optical simulation
will not be ideal. Actually, the almost negligible losses from
each of the waveguides to the environment allow us to follow
thepropagationofclassical fields through thephotonicarrayby
imaging the plane of propagation [27]. While these losses may
beengineered in thephotoniccrystal, theyarenot easily related
to the effect of dissipation in the quantum optics model [46,47],
but it may be possible to take a dissipative model and engineer
an adequate classical or quantum simulator [44,48].

5. CONCLUSION
We have proposed an intensity-dependent quantum Rabi
model with an underlying parity and SU(1,1) symmetry. In
the case k � 1∕2, our model reduces to the BSM plus
counter-rotating terms. As expected from the behavior of
the BSM, our model seems to be invalid for coupling factors
of g ≥ ω∕2. The behavior of the spectra is similar to the
quantum Rabi model, that is, avoided crossings in spectral
branches belonging to the same parity and crossings between
spectral branches belonging to different parities. In the special
case of degenerate qubit frequency, ω0 � 0, it is straightfor-
ward to diagonalize the model with generalized SU(1,1)
coherent states. It is also possible to provide qubit-field
creation and annihilation operators that fulfill the commutator
for the field and allow us to construct an unbroken SUSY

Fig. 2. Numerical simulation of evolution under Ĥ 0
� with an initial

state j0; ei and parameter set fω;ω0; g; kg � fω; 3ω∕4; 4ω∕10; 1∕2g.
(a) Intensity at the zeroth waveguide, (b) mean photon number equiv-
alent to the intensity barycenter, and (c) mean atomic excitation en-
ergy equivalent to the total intensity in odd waveguides minus the total
intensity in even waveguides.
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partner for it; the SUSY partners correspond to Bargmann
parameters k and kp � k� 1∕2. This gives a recipe to a class
of isospectral photonic lattices. Finally, we discussed the
classical simulation of the full theoretical model in finite ar-
rays of coupled photonic waveguides and showed by numeri-
cal simulation that it is possible to find quasi-periodic
reconstruction for a given initial state in the full intensity-
dependent quantum Rabi model for a given parameter set.
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