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Abstract
By taking advantage of the superposition principle inherent to quantum mechanics, we show that
it is possible, by interacting a quantized field with a trapped ion, to reach both high intensity and
low intensity regimes simultaneously. We use the London operator in order to simplify the
Hamiltonians involved in the problem.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Trapped ions are considered among the best candidates to
perform quantum information processing [1, 2]. By interacting
them with laser beams, they are, compared to other
systems such as quantized field, moving mirrors, etc., relatively
easy to manipulate. This makes them a very good option
for the production of nonclassical states of their vibrational
motion [3–8, 10], the reconstruction of quasiprobability dis-
tribution functions [11], the production of quantum gates
[2], etc.

They are an excellent choice for the production of non-
linear coherent states [12], as Hamiltonians may be engi-
neered to have functions (usually Laguerre polynomials) of
the phonon number operator [5, 13]; therefore, exponentials
(displacements) of sums of nonlinear creation and annihila-
tion operators may be applied to the vacuum in order to
generate them.

The trapping of individual ions also offers a lot of
possibilities in spectroscopy [14], in the research of fre-
quency standards [15, 16], in the study of quantum jumps
[17], and the engineering of specific Hamiltonians [9], to
name some additional applications. To make the ions more
stable in the trap, to increase the time of confinement, and
also to avoid undesirable random motions, it is required

that the ion be in its vibrational ground state. This can be
accomplished by means of the adequate use of lasers; with
the help of these lasers, the internal energy levels of the
trapped ion can be coupled to their vibrational quantum
states in such a way that for a certain detuning, the cou-
pling is equivalent to the Jaynes–Cummings Hamiltonian
[18–24].

The light that shines the ions is mostly considered clas-
sical; however, the electromagnetic field may also be con-
sidered quantized [25, 26]. This consideration clearly makes
the problem more complicated but also enriches it. For
instance, the superposition principle may then be used to
reach several regimes that should otherwise be treated sepa-
rately, such as the high, medium, and low intensity regimes.
By treating the light as a quantized field and by choosing a
proper initial wave function for it, these regimes are at hand
with a single laser field. In what follows we show how this
may be achieved.

2. Ion-quantized-field interaction

We consider the interaction between an ion and an electro-
magnetic quantum field. The Hamiltonian (in units = 1,

| Royal Swedish Academy of Sciences Physica Scripta

Phys. Scr. 89 (2014) 125101 (7pp) doi:10.1088/0031-8949/89/12/125101

0031-8949/14/125101+07$33.00 © 2014 The Royal Swedish Academy of Sciences Printed in the UK1

mailto:hmmc@inaoep.mx
http://dx.doi.org/10.1088/0031-8949/89/12/125101


which will be used throughout this paper) for this system is
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where ω0 is the atomic transition frequency, ω is the field
frequency, Ω the (real) Rabi frequency, ν the harmonic
trapping frequency, and η the Lamb–Dicke parameter. The
creation and annihilation vibrational operators are denoted b†

and b, respectively, while the field ones are denoted a† and a.
The σ operators are the usual spin Pauli matrices. If we
consider δ ω ω= −0 and go to the rotating frame at fre-
quency ω, we obtain the interaction Hamiltonian
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In order to solve the above Hamiltonian, let us define the
London [27, 28] or Susskind–Glogower operator [29],
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that in terms of the Pauli matrices is written as
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which can be expressed, with the help of displacement

operator β β β= −D b bˆ ( ) exp ( ˆ * ˆ)
†

, as [30],
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Note that the interaction part of the above Hamiltonian is
linear in the vibrational creation and annihilation operators,
much simpler than the interaction part in equation (7), where
all the powers of these operators are implicit in the expo-
nential term.

We will consider now for simplicity the high intensity
and low intensity regimes in order to diagonalize the
Hamiltonian. We apply the unitary transformations,
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to the Hamiltonian (10) and consider the parameters
ξ ξ ≪, 11 2 . Under this assumption, we can remain up to the
first order in the expansion
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and can define the effective Hamiltonian [31] as
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In the resonant case (δ = 0), the effective Hamiltonian
becomes diagonal, and we can solve it in an easy way. We
also consider the Lamb–Dicke regime, i.e., η ≪ 1. Now,

depending on the intensity of the quantized field Ω 〈 〉a aˆ ˆ†

compared to the trap frequency ν, we can produce different
approximations in this problem. However, taking into account
the superposition principle in quantum mechanics, we can
produce several regimes—simultaneously low, medium, and
high intensity regimes—in contrast to the classical field case
[10]. If we consider, for instance, an initial field wavefunction
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of the form
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where 〉s| , 〉m| , and 〉l| are number states and their amplitudes
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2 2 ,

the different intensity regimes may be achieved simulta-
neously, provided that
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For simplicity, we will consider Cm = 0 as we study the
high and low intensity regimes simultaneously. We assume
the total initial state as
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where the vibrational wavefunction ψ α∣ 〉 = ∣ 〉i(0)V is a
coherent state, and α is a real number, to avoid extras
phases (although the calculation may be done for com-
plex α).

Then the solutions to the Schrödinger equation for the
interaction Hamiltonian reads
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3. System dynamics

With the time evolved wavefunction given in equation (19),
we can calculate the probability to find the ion in its excited
state Pe(t) as a function of time and the Wigner function for
the vibrational states, which can be written as
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with =k s l, and γ = +q ip( ) 2 a point in phase space. For
all the plots, the initial conditions have been chosen with the
coherence parameter α = 2.0; we fixed parameters η = 0.1,
Ω = 0.2, and ν = 1.0. We analyze the effects resulting from
variation of the coefficients CS and Cl on Pe(t) and γW ( ). For

Figure 1. Time evolution of the probability to find the ion in its
excited state Pe(t) for η = 0.1, Ω = 0.2, and ν = 1.0. We assumed
an initial field wavefunction superposition with s = 1 and l = 200 as

ψ∣ 〉 = − ∣ 〉 + ∣ 〉r r(0) 1 1 200 ,F
2 with (a) r = 0, (b) r = 0.6 and (c)

r = 0.8. The initial vibrational wavefunction was the coherent state
ψ α∣ 〉 = ∣ 〉i(0)V with α = 2.0. The ion was considered initially in its
ground state.
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the sake of simplicity, we are going to consider = −C r1s
2

and =C rl , where r allows one to control the corresponding
coefficients of the superposition. In our computations, we
have also chosen the initial field wavefunction superposition
for s = 1 and l = 200 as

ψ∣ = − ∣ + ∣r r(0) 1 1 200 (28)F
2

in order to satisfy the high and low intensity regimes at the
same time, which are defined by equations (15) and (17),
respectively.

Figure 1 displays the evolution of the atomic level
occupation probability of the upper level Pe(t) for different
values of r. It is worth mentioning that Pe(t) evolves peri-
odically, and their oscillations exhibit ‘collapse-revival’
behaviour. In figure 1(a) we plot Pe(t) when the parameter
r = 0; i.e., in this case we have only a number state ∣ 〉1 in the
field wavefunction. Hence we observe a Rabi oscillation of
Ω 1 in the probability Pe(t). When r = 0.6, we have two
Rabi oscillations in Pe(t), Ω 1 , and Ω 200 , and this prob-
ability becomes spiky. Increasing further r = 0.8, large
oscillations and spikes in the probability appear (see

Figure 2. Time evolution of the Wigner function for the vibrational states of the ion for: (a) t = 0, (b) =t 172.78, (c) t = 345.57, and (d)
t = 659.70. We assumed an initial field wavefunction in a superposition of number states, with s = 1 and l = 200, as

ψ∣ 〉 = − ∣ 〉 + ∣ 〉r r(0) 1 1 200 ,F
2 with r = 0. The initial vibrational wavefunction was the coherent state ψ α∣ 〉 = ∣ 〉i(0)V with α = 2.0, and

the ion was considered initially in its ground state. η = 0.1, Ω = 0.2, and ν = 1.0 as in figure 1.

4
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figure 1(c)). When r = 1, we have the same effect as in
figure 1(a) but with additional peaks and a different period.
This is of course due to the increase of the intensity of the
quantized field.

In figure 2 we show the time evolution in phase space of
the Wigner function for the vibrational states of the ion when
r = 0. At t = 0 (figure 2(a)), the initial Wigner function has the
shape of a single hump. With the increase of time, this hump
revolving around a circle of radius α will split into two
humps, because each one has a slightly different angular
velocity (this may be seen from equation (24)), as it is shown

in figure 2(b) when ≈t 172.78. The two motional branches of
the Wigner function of the field vibration mode determine the
oscillatory behaviour of the atomic level occupation prob-
ability of figure 1(a) due to the interference between the two
humps. In figure 2(b) it may be seen that the Wigner function
takes negative values. When ≈t 345.57, the humps are well
separated (see figure 2(c)), and the Rabi oscillations are small
compared with the initial ones (see figure 1(a)); also the
negative values of the Wigner function are small too. We
have the collapse region when >t 345.57, and the collision of
two humps leads to the revival of Rabi oscillations, whose

Figure 3. Time evolution of the Wigner function for the vibrational states of the ion for: (a) t = 0, (b) =t 172.78, (c) t = 345.57, and (d)
t = 659.70. We assumed an initial field wavefunction in a superposition of number states, with s = 1 and l = 200, as

ψ∣ 〉 = − ∣ 〉 + ∣ 〉r r(0) 1 1 200 ,F
2 with r = 0.6. The initial vibrational wavefunction was the coherent state ψ α∣ 〉 = ∣ 〉i(0)V with α = 2.0, and

the ion was considered initially in its ground state. η = 0.1, Ω = 0.2, and ν = 1.0 as in figure 1.
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maximum value it reaches when we recover the initial hump
at time ≈t 659.70, as shown in figure 2(d).

A similar behaviour for Wigner functions occurs when
r = 0.6, as shown in figure 3. In order to compare it with
results shown in the previous figure, we have considered the
same interaction times in each of figures 3(a)–(d) and 4(a)–
(d). At t = 0 we have a single hump (see figure 3(a)); as time
goes on, it splits into two humps, as shown in figure 3(b).
These humps will not be well separated; in this case, the
humps are spread on the circle of radius α as in figure 3(c).
Finally, we cannot recover the initial Wigner function at

≈t 659.70, as shown in figure 3(d), where two new humps

appear due to the different frequencies that arise because of
the high and low intensity regimes. The heights and widths
of these new humps can be increased by setting r = 0.8, as
shown in figure 4(d). Also, figure 4(c) shows how the
Wigner function is spread on the circular path before it
splits up.

4. Conclusions

We have taken advantage of the use of the London–Susskind–
Glogower operator to transform the ion-laser-quantized field

Figure 4. Time evolution of the Wigner function for the vibrational states of the ion for: (a) t = 0, (b) =t 172.78, (c) t = 345.57, and (d)

t = 659.70. We assumed an initial fieldwith s = 1 and l = 200, as ψ∣ 〉 = − ∣ 〉 + ∣ 〉r r(0) 1 1 200 ,F
2 with r = 0.8. The initial vibrational

wavefunction was the coherent state ψ α∣ 〉 = ∣ 〉i(0)V with α = 2.0, and the ion was considered initially in its ground state. η = 0.1, Ω = 0.2,
and ν = 1.0 as in figure 1.
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Hamiltonian in an easy form. We considered an initial
superposition of number states in the field wavefunction in
order to study simultaneously the high and low intensity
regimes. This revealed a behaviour of the Wigner function of
the vibrational motion not observed when a classical field is
considered.
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