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Abstract
We describe the interaction between focusing regions and analyze the resulting physical features.
The study is supported by the fact that focusing regions exhibit particle-like behavior and the
interaction among these presents features similar to inelastic collision. When focusing regions
are generated in a medium with random refractive index, the irradiance distribution along the
focusing regions changes according to the diffusion process and the collision between them
generates vortex-like effects. This study was implemented by solving the irradiance transport
equation. Experimental results are in good agreement with the theoretical model performed.

Keywords: focusing regions, diffusion process, irradiance transport equation

(Some figures may appear in colour only in the online journal)

1. Introduction

The physical properties of an optical field can be obtained
from the wavefront, which is a surface that can be represented
in parametric form as [1, 2]

= =x u v y y u v z z u v( , ), ( , ), ( , ). (1)

In order to obtain the mathematical representation of the
wavefront geometry z=F(x,y), free of the parameters (u,v),
the parametric functions (1) must be invertible and the
determinant of the transformation matrix must be different to
zero:

= ≠⎜ ⎟⎛
⎝

⎞
⎠M u v

x x
y ydet ( , ) det 0, (2)u v

u v

where (xu,v, yu,v) represents the partial derivatives. Then we
have that the transformation matrix has rank 2; however,
optical regions exist where the matrix rank is smaller than 2,
which is the mathematical definition of singularity. In the
neighborhood of these singular regions, interesting physical
features appear, which are analyzed in the present manuscript.
When the matrix rank is 0, the singularity corresponds to a
point, and when the matrix rank is 1 it is a curve [1]. From
these results, we know that the geometry of optical singula-
rities is either points or curves. Singularities are also known as
focusing regions or caustics and these are generated by the

envelope of a set of trajectories orthogonal to the wave-
front [3–7].

In the present manuscript, we focus on investigating the
interaction between two focusing regions, which implies
dynamic focusing regions. These can be generated in a
medium with random refractive index whose statistical
parameters are time-dependent. To maintain a geometrical
point of view, we propose that the random fluctuations of the
refractive index are equivalent to a dynamic rough surface in
the sense that both of them generate the same focusing
regions. We will show that such interaction produces irra-
diance redistribution, generating light that is guided along the
focusing regions. During the interaction period, part of the
energy modifies the geometry of the focusing region while
another may generate vortex-like effects, both these features
being analyzed in the present study. The analysis is supported
by the fact that focusing regions exhibit adiabatic features
[8, 9], which means that such optical fields have particle-like
features and the interaction between focusing regions can be
modeled as a kind of collision between particles, establishing
a direct analogy with mechanical systems.

The spatio-temporal evolution of focusing regions pre-
sents two important features, the first of which is the behavior
of focusing regions free of interaction. Its evolution in a
medium with random refractive index generates morphologic
changes following a diffusion process. Another important
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feature occurs during the interaction between two focusing
regions whose behavior is similar to an inelastic collision,
which means that focusing regions are linked to each other at
the contact point. This interaction is analyzed from the irra-
diance transport equation [10–12] and is implemented
experimentally by propagating a plane wave through a med-
ium with random refractive index. The medium is obtained by
heating water up to ∼80 °C and allowing it to cool down until
it reaches room temperature. The refractive index may takes
values in the interval of n(20 °C)– n(80 °C). The water’s
temperature is non-uniform generating the random refractive
index. Illuminating the water container with a plane wave, the
optical field generates dynamic focusing regions whose
interaction is detected with a CCD camera.

2. Description and synthesis of focusing regions

To describe the physical features of focusing regions and to
pave the way, we maintain a geometric point of view. The
type of fluctuation of the refractive index in regard to volume
is equivalent to a random boundary condition which is
interpreted as a rough surface whose profile changes with
time, as seen in figure 1. This fact is justified in the
appendix A. In this way, the two systems are equivalent in the
sense that both generate the same focusing regions. As a
consequence of the central limit theorem, we assume that the
height distribution for the equivalent rough surface follows a
Gaussian probability density function with time-dependent
variance [13–14], represented by

ρ
π σ σ

= −
⎛
⎝⎜

⎞
⎠⎟z t

t

z

t
( , )

1

2 ( )
exp

2 ( )
. (3)

2

It is well known that this function satisfies the diffusion
equation. This property allows one to maintain a geometric

point of view, which is necessary to explain the kinematic of
focusing regions. In figure 1 we try to sketch the fact that only
some regions of the rough surface generate a focusing region
whose local profile is given by z= f (ax), where a(t) changes
as a function of time. Some other interesting properties of
focusing regions can be founded in [15]. Therefore, we can
select a set of orthogonal trajectories to the boundary condi-
tion, generating an envelope curve that is the focusing region
under study.

The focusing region corresponds to the envelope of the
curvature centers of the boundary condition y = f(ax), and the
mathematical expression for the curvature center (α, β) is
given by [1, 2, 9]:

α

β

= −
′ + ′

″

= +
+ ′

″

( )

( )

x a x
y a y
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x a y
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,

( , )
1
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From these expressions, it is easy to identify the non-
linear behavior of the focusing region, characterized by the
change in arc length s, whose mathematical expression is
given by

∫Δ =
″

′ − ′ +
″( )s

y
y y

a y
a

1 4
d , (5)

a

1

2 2
2

6 2

f

a

1
2

where it will be noted that minor changes in the parameter a
imply major changes in the geometry of the focusing region.
As a consequence, the irradiance is continuously redistributed
along the focusing region. Previous statements can be
resumed in figure 2, which shows the synthesis of an envel-
ope curve, where a high density of trajectories is identified in
the neighborhood of the focusing regions and thus optical
diffusion processes are expected.

Figure 1. (a) Experimental set-up to generate the interaction between
focusing regions. (b) and (c) show the equivalent systems for two
times. In (a), the focusing region is generated by the propagation of a
plane wave through a random medium. In (b) and (c), the focusing
region is generated by orthogonal trajectories to the rough surface for
two different times.

Figure 2. Synthesis of the focusing region using the envelope of a
ray set.
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3. Diffusion process on the focusing regions

In the appendix B, we show in a rigorous way that the irra-
diance function satisfies the diffusion differential equation,

∂
∂

= ∂
∂

I

s
D

I

t
, (6)

2

2

where s is the arc length, I is the irradiance function, and D is
the diffusion constant. Note that the type of random fluctua-
tion of the refractive index has a Gaussian probability density
function, which is a consequence of the central limit theorem.
Given that the trajectories that generate the focusing region
are orthogonal to the wavefront, it is expected that the dif-
fusion effects will appear along the focusing region, which
necessary is a curve according with the definition of
singularity.

The diffusion equation supports solutions with time
decreasing exponential dependence, and the entire solution is
given by

β μ= + −I x y z s t I x y z s ht( , , , , ) ( , , ) cos ( ) exp ( ), (7)0

where μ is a phase constant, the harmonic term describes light
guided along the arc length. The structure of the boundary
condition for the diffusion equation given by I0(x,y,z), must
satisfy the irradiance transport equation [11] and this will be
analyzed in the following section.

To corroborate the diffusion process, we propagate a
plane wave thought a media with random refractive index
generated by heating water. The experimental results obtained
are shown in the sequence of images in figure 3. The region of
interest is enclosed in a circle of approximately 5 mm of
diameter, in fact the focusing regions are easily detected even

without an additional optical system. The focusing regions are
denoted by (1) and (2) and were detected using a CCD camera
as is shown in figure 1. The end point of region (1) moves
toward the focusing region (2) until it reaches it and is then
linked at the contact point, analogous to an inelastic collision.
This last behavior will be explained below. As an interim
conclusion, the irradiance for a focusing region in a random
medium changes its geometry following a diffusion process
manifested along the arc length.

4. Interaction between focusing regions

The next focus of the study is to analyze the interaction
between two focusing regions. We assume that a plane wave
is propagated along the z-coordinate and that the changes in
irradiance are detected on the transversal plane, x–y. The
spatial part of the irradiance function represented by I0(x,y,z)
satisfies the irradiance transport equation, given by

 ⋅ = ∂
∂⊥ ⊥( )I x y z L x y z
z

I x y z( , , ) ( , , ) ( , , ), (8)0 0

where L is the phase function and ⊥ is the transversal
Laplace operator. Because the refractive index changes ran-
domly, the morphology of the focusing region also changes.
A geometrical idea of the interaction between focusing
regions is shown in figure 4.

To describe the physical features of the interaction, we
propose that at the contact point (x,y,z) the irradiance is given

Figure 3. The circles enclose the diffusion process for the focusing region (1), which moves toward the focusing region (2) until they are
linked at the contact point. The duration of the process was ∼1 s, using sunlight as light source.
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by

= +I x y z I x y z I x y z( , , ) ( , , ) ( , , ), (9)1 2

and the phase function is given by a phase difference between
the corresponding optical fields, i.e.

= −L x y z L x y z L x y z( , , ) ( , , ) ( , , ). (10)1 2

Substituting (9) and (10) in the irradiance transport
equation, we obtain

  
  
  

⋅ + ⋅
− ⋅ − ⋅
+ ⋅ −

= −
∂
∂

−
∂
∂

⊥ ⊥ ⊥

⊥ ⊥ ⊥

⊥ ⊥( )

I L I L

I L I L

I L I L

I

z

I

z
, (11)

1 1 1
2

1

2 2 2
2

2

1 2 2 1

1 2

where the interaction between the focusing regions is deter-
mined by the term   = ⋅ −⊥ ⊥( )I I L I Lint 1 2 2 1 . We define the
irradiance density current as the vector function

 = −⊥ ⊥J I L I L . (12)12 1 2 2 1

During the period of interaction the irradiance is flowing
along the focusing region, which must satisfy the continuity
equation as a consequence of energy conservation:

 ⋅ =
∂
∂

J
I

t
, (13)12

12

where I12 is the irradiance flowing between the focusing
regions. An unexpected result was identified in the sequence
of images shown in figure 5. At the contact point the focusing
regions are linked and demonstrate a tendency to generate a
single focusing region. During the period of interaction one of
the focusing regions became brighter, which is experimental
evidence of the irradiance flowing along the focusing region.
When the interaction stopped, the irradiance density current

J12 becomes zero:

 − =⊥ ⊥I L I L 0, (14)1 2 2 1

and the gradient vectors are parallel:

 =⊥ ⊥L
I

I
L . (15)2

2

1
1

The physical interpretation of equation (15) is that the
irradiance interaction has the structure of an inelastic colli-
sion, meaning that the two focusing regions are joined gen-
erating a single focusing region as it is shown by the sequence
of images in figure 5. It should be noted that the focusing
regions are linked at the contact point and a tendency to
increase the number of contact points is observed, thereby
generating a single focusing region.

Another important feature is the generation of vortex-like
features whose structure can be obtained taking the curl of
equation (12), obtaining

    × = × − ×⊥ ⊥ ⊥ ⊥ ⊥J I L I L . (16)1 2 2 1

The modulus of the curl depends mainly on the sign of
each term, which is related to the curvature of the focusing
regions. When the curvature vector of each focusing region
has the same sign, the curl modulus has a low value and the
kinematic of the linked focusing regions is mainly translation.
When the curvature vector has an opposite sign, the curl takes
higher values and it has vortex-like behavior. These two
scenarios are illustrated in figure 6, and the experimental
results shown in figure 7 reinforce the previous comments,
where vortex-like features are evident.

5. Conclusions

In conclusion, we analyzed the kinematic of focusing regions,
to perform this study was necessary to generate dynamic
focusing regions, it was possible by propagating light trough a
media with random refractive index. We can distinguish two
important features: (1) we demonstrate that the morphological
changes of a single focal region follows a diffusion process,
due to the singularities has curve shape, the diffusion process
is manifested by changes in the arc length and curvature of
the focusing region. (2) Another unexpected feature is that the
interaction between focusing regions shows a similarity to
inelastic collisions, it occurs when the focusing regions col-
lide and then are linked at the contact point. To describe this
interaction we used the irradiance transport equation which
allows identifying the term that describes how the irradiance
and phase of each focusing regions is redistributed. From this
term, vortex-like features can be observed, establishing a
similarity to mechanical systems because the vortex structure
is related to the transport of angular momentum.

The experimental results are in good agreement with the
theoretical model performed. Finally, as a consequence of the
mechanical analogy, focusing regions can be described by
means of their center of irradiance, which is analogous to the
center of mass. The presented study can be used for dynamic
optical trapping and the development of optical motors. The

Figure 4. In (a), focusing regions are generated by the envelope of
trajectories; (b) interaction between two focusing regions; (c) new
focusing region.

4

J. Opt. 16 (2014) 085704 G Martínez-Niconoff et al



foregoing comments will be explained using our model and
presented in a forthcoming paper.

Appendix A. Equivalence between the volume media
with random refractive index with the dynamic rough
surface

In this appendix we show the equivalence between the light
propagation trough a media with random refractive index and
the diffraction field emerging from a rough surface. The study
is performed by interpreting the random media as an array of
thin slices depending on x–y spatial coordinates and time as it
is sketched in figure A.1. Therefore, each slide can be inter-
preted as a random phase transmittance, the representation for
the ith transmittance is given by Ti(x,y,t). Then, the light
propagation trough the volume of the random media is
equivalent to analyze the light propagation through a set of
transmittances in a tandem array.

The transmittance set is illuminated by a point source
placed a distance z from the surface as it is sketched in
figure A.1.

By considering a single one transmittance, the diffraction
field in the Fraunhofer region, corresponds to the Fourier

transform of the transmittance function given by

∫ ∫
φ

π

=
= − +
=

−∞

∞

−∞

∞
zu v

t x y i xu yv x y

T u v

( , , 0)

( , ) exp ( 2 ( ) ) d d

( , ), (A.1)

1

1

where λ=u x z/0 , λ=v y z/
0 1, and z1 is the distance from the

light source to the transmittance plane. We remark that the
distance z1 appears as a scale factor in the Fourier transform,
and it can be proof that it is synthesized, in a virtual way, on
the source plane.

Considering now, the propagation trough the second
transmittance, the Fraunhofer diffraction field acquires the
form of the convolution function between the Fourier trans-
forms of each transmittance given by:

∫ ∫
φ

π

=
=

× − +
= ⊗

−∞

∞

−∞

∞
u v z

t x y t t x y t

i xu yv x y
T u v t T u v t

( , , 0)

( , , ) ( , , )

exp ( 2 ( ) ) d d
( , , ) ( , , ), (A.2)

1 2

1 2

where ⊗ represents the convolution. Taking into account the
complete set of transmittances, the Fraunhofer diffraction
field takes the form:

∫ ∫
φ

Π ¯ π

=

= − +

= ⊗ … ⊗
=

−∞

∞

−∞

∞
zu v t

T x y t i xu yv x y

T u v T u v T u v

T u v t

( , , 0, )

( , , ) exp ( 2 ( ) ) d d

( , ) ( , ) ( , )
( , , ). (A.3)

i

n1 2

This equation implies that the Fraunhofer diffraction field
associated to the set of transmittances in a tandem array is
generated, in a virtual way, on the source plane. It is easily
corroborated by watching the light source trough the random
media.

Figure 5. Experimental interaction between two focusing regions. The interaction has similar features to an inelastic collision. The time
duration of the process was ∼1 s.

Figure 6. The interaction between two focusing regions depends on
the curvature sign. In (a) both focusing regions have the same
curvature sign while in (b) they have opposite signs.
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Consequently, it is possible to associate a single one
transmittance function tg, whose representation corresponds
with the inverse Fourier transform of the Fraunhofer diffrac-
tion field given by

=

× ⊗ … ⊗

−

( )
t x y t F

T u v, t T u v, t T u v, t

( , , )

( , ) ( , ) ( , ) . (A.4)

g

n

1

1 2

Following this kind of analysis, it is possible to match the
transmittance function tg with a rough surface. It can be
understood by considering the rough surface as a set of thin

slices, justifying in this way the equivalence between the light
propagation through the volume media with random refrac-
tive index and a rough surface.

Appendix B. Diffusion process for the focusing
regions

In this section, we justified the diffusion process that may
occur in the neighborhood of the focusing regions. The
parameters involved in the analysis are sketched in figure 2.
For the analysis, we define f(s,t) as a function associated to the
density of rays in the neighborhood of the focusing region. It
is related to the irradiance function by

Δ=I s t af s t A( , ) ( , ) , (B.1)

where ΔA is the element of area perpendicular to the focusing
region and a is a constant of proportionality. Taking the time
partial derivative of the irradiance function, we have

Δ ∂
∂

= ∂
∂

a A
f s t

t

I

t

( , )
. (B.2)

Taking now the derivative of the density of rays, when
the arc length increases a distance Δs, we obtain

Δ Δ Δ Δ∂
∂

= ∂
∂

= ∂
∂

a s A
f s t

s
s

I

s
t

I

t

( , )
, (B.3)

where Δt is the time that takes the focusing region in increase

Figure 7. The sequence of images shows the time evolution for the interaction between focusing with opposite curvature generating vortex-
like features. The time duration of the process was ∼1 s.

Figure A.1. The Fraunhofer diffraction field is generated on the
source plane. It is easily identified by watching the source trough the
random media.
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a distance Δs. We can re-write the last equation as

Δ
Δ

∂
∂

= ∂
∂

s

t

I s t

s

I

t

( , )
. (B.4)

The speed of changes of the focusing region is given by
= Δ

Δv s

t
, consequently, last expression acquires the form

∂
∂

= ∂
∂

v
I s t

s

I

t

( , )
(B.5)

The term vI(s,t), describe the change of the irradiance
function, which is redistributed along the arc of length, then
we have

= ∂
∂

vI s t b
I s t

s
( , )

( , )
, (B.6)

which can be consider as the Fick’s law, where b is another
constant of proportionally. Substituting (B.6) in (B.5) we
finally obtain

∂
∂

= ∂
∂

I s t

s
D

I

t

( , )
, (B.7)

2

2

which is the diffusion equation and D is the diffusion
constant.
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