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a b s t r a c t

We propose a new method for autonomously finding clusters in spatial data. The proposed method
belongs to the so called nearest neighbor approaches for finding clusters. It is a repetitive technique
which produces changing averages and deviations of nearest neighbor distance parameters and results
in a final set of clusters. The proposed technique is capable of eliminating background noise, outliers, and
detection of clusters with different densities in a given data set. Using a wide variety of data sets, we
demonstrate that the proposed cluster seeking algorithm performs at least as well as various other
currently popular algorithms and in several cases surpasses them in performance.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Cluster analysis divides data into groups that are useful for specific
applications. These groups are called clusters and the data points in a
given cluster are in some sense similar. Similarity of data objects may
be defined in terms of color, statistics, spectral values, and a host
of other features. Some excellent summaries can be found in
[22,10,24,27,25], and [39,1] with the last reference devoting six
chapters to cluster analysis. These sources demonstrate that there is
no single optimal cluster detection algorithm but a plethora of
methods for cluster detection. A scanning of current cluster seeking
algorithms available in the open literature makes it clear that cluster
detection is still an experiment oriented endeavor in the sense that
the performance of a given algorithm is not only dependent on the
type of data being analyzed, but is also strongly influenced by the
chosen measure of pattern similarity as well as the method used for
identifying clusters in the data. For example, suppose we have a set of
objects O specified by a sequence p1;…; pn of properties or attributes
such as a specific color, shape, and weight range with different objects
lacking different properties. Such a set is often transformed into a set
of binary vectors X �Rn, where x¼ ðx1;…; xnÞAX is defined by xi¼1,
if and only if, pi holds else xi¼0. In this situation, two objects x; yAX

are viewed as similar if they share a large majority of properties or
attributes. Suppose X contains the elements w; x; y, and z given by:
wi¼1 if i¼1 else wi¼0, xi¼1 if i¼n else xi¼0, yi¼0 if i¼1 else yi¼1,
and zi¼0 if i¼n else zi¼1. Employing the Euclidean metric, one
obtains dðw;yÞ ¼ n, which can be very large in some settings. This
shows that w and y are spatially far apart when viewed as points in a
n-dimensional Euclidean space. This can also be interpreted that the
two vectors are very dissimilar as they have no common attributes.
However, we also have dðw;xÞ ¼

ffiffiffi
2

p
¼ dðy; zÞ even though w and x

share no attributes and are, therefore, totally dissimilar while y and z
are very similar. Thus, the Euclidean metric provides little information
when used as a clustering tool for this type of data. Likewise, the L1
metric is of little use in cluster analysis of binary data since
dðx; yÞ ¼⋁n

i ¼ 1jxi�yij ¼ 1 for all distinct pairs x; yAX, where X is
an n-dimensional binary data set and ⋁ denotes the maximum.

It is pertinent to note that some researchers test their clustering
algorithms on well known data sets that are commonly used in
machine learning and training of artificial neural networks for
pattern classificationwhich, although related, differs from the subject
of cluster detection and cluster analysis. A typical example is the
4-dimensional Iris data set consisting of three classes, with each class
corresponding to a distinct species of the genus Iris [17,10]. Four
features, specific to a given species, are described in vector format.
Two of the classes are geometrically closely intertwined in 4-space
and can be successfully separated with neural network techniques
when using the complete data set as training data but fails when
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using 50% and even 60% of the data for training [34]. The problem is
that the two intertwined sets do not form two well defined spatial
clusters that can be determined using current clustering techniques.
For this reason we do not consider many of the standard data sets
that are commonly used in pattern classification tasks for evaluating
performance of cluster seeking algorithms.

In our approach we view clusters in terms of their spatial
arrangement and distribution by using the old adage that “birds of
a feather will flock together.” For instance, when observing mig-
rating cranes one sees beautiful V shaped formations, while
blackbirds will flock into cloud shaped 3-dimensional globular
clusters. Several migrating species of birds form huge rotating 3D
doughnut or spiral shaped clusters before assuming a single line or
a V shaped formation. In his seminal paper entitled Data Cluster-
ing: 50 years beyond K-means, A.K. Jain points out that there are no
cluster algorithms available that are able to detect all seven
clusters shown in Fig. 1 even though these clusters are readily
apparent to a human data analyst [25]. The problems raised by
Jain's example are manifold. First, there is the issue of the noisy
background that is interspersed with the data clusters. Next, the
two globular clusters on the left side of the figure have different
densities. Finally, the well defined geometric pattern clusters on
the right side have cluster center problems. The circular clusters
share the same geometric cluster center, while the center for one
of the two spiral cluster may be located inside or closer to the
other spiral. These clusters are troublesome for various center
based approaches to clustering.

The basic idea underlying center based approaches is to group a
set X �Rn of feature vectors into K clusters using an appropriate
similarity measure for comparison with the cluster's center. Gen-
erally, this measure is the distance between the feature vector and
the cluster's center and assigns the feature vector xj to cluster Ck
whenever the distance from xj to the cluster's center ck is the
minimum over all K clusters. The k-means (hard c-means) cluster-
ing algorithm, first developed by MacQueen [29], belongs to this
group. The algorithm was later modified by Dunn and Bezdek
[11,5,6] to include fuzzy c-means clustering and has become one of
the most popular and widely used clustering method. Since the
number of actual clusters in high dimensional data is generally not
known, the initial input value K can critically affect the algorithm's
output. Similarly, different initial centroid values usually result in
different output and performance. Consequently, various modifi-
cations of c-means algorithms have been proposed in order to get
around some of these problems [28,43,9,44,33,45,41,47]. The

performance of these modifications always improved on the
examples given by their authors but still failed when applied to
Jain's example as well as other data sets some of which are given
in subsequent sections.

Jain's example will yield very mixed results for many clustering
algorithms in vogue today. However, it is our opinion that any
automatic clustering algorithmworth its salt should be able to find
the three clusters shown in Fig. 2.

Here the data set X consists of 192 points; i.e., X ¼ fx1;…;

x192g �R2. The statistics associated with X are trivial. Every point
xjAX has a neighboring point whose distance from xj is of unit
length. This is true for the Euclidean as well as the chessboard and the
city-block distance metric. More specifically, for j¼ 1;…;192, the
number τj ¼⋀192

k ¼ 1;ka jdðxj; xkÞ ¼ 1, where d denotes any of the three
distances mentioned and ⋀ denotes the global minimum. Hence, the
average nearest neighbor distance and the standard deviation of the
nearest neighbor distances are given by μ¼∑192

j ¼ 1τj=192¼ 1 and
σ2 ¼∑192

j ¼ 1ðτj�μÞ2=192¼ 0, respectively.
Nevertheless, when applying either the c-means or the fuzzy

c-means algorithm in Matlab and specifying K¼3, one may not
obtain the 3 correct clusters as shown in Fig. 3 unless one provides
the actual clusters. Even when using the correct number K and
selecting randomly each starting point or seed in each of the actual
clusters may still result in incorrect identification of the true
clusters. This happens because cluster detection in data containing
clusters of greatly varying sizes and densities remains problematic
when applying the various modified c-means techniques cited
earlier. The reason for this is that the fundamental building blocks
of these modifications are all based on the classical c-means and
fuzzy c-means methodology and as such inherit some of the
undesirable properties of their predecessors.

For example, using the alternative c-means clustering algo-
rithm proposed by Wu and Yang [43] produces the results shown
in Fig. 3(b). Here the fuzzy membership threshold used was set
at 0.4; i.e., data points below 0.4 where not assigned to any cluster.
One can assign all points to clusters by simply assigning cluster
membership to a cluster if the vector's fuzzy membership is less
with respect to the other two clusters. In this case the result is
shown in Fig. 3(c). The method of randomly assigning data points to
three sets of equal size and defining the seeds to be the center points
of these sets may result in the three clusters shown in Fig. 3(d).
Given the inherent difficulties encountered by the c-means method
listed here and elsewhere [4,32], we considered several cluster
seeking methods that were not based on the c-means paradigm.

Fig. 1. Seven clusters that differ in shape, size, and density in a noisy background. Fig. 2. Three separated globular clusters differing only in size.
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Among these were nearest neighbor algorithms, cluster trees and
density-based methods, model and rule-based approaches, and path-
based spectral techniques [26,42,14,18,16,8,38,30]. Although several
of these methods exhibited various advantages over c-means-based
algorithms, they all failed in correctly identifying the seven clusters
with noisy background shown in Fig. 1. We briefly summarize some
of the reasons for this failure.

Spectral clustering makes use of the spectrum, specifically the
eigenvalues of the similarity matrix S¼ fsijg obtained from the data
[31,46]. That is, if X denotes the data set and s the similarity measure,
then sij ¼ sðxi; xjÞ, where xi; xjAX. The Shi–Malik algorithm for
image segmentation is based on this concept [36]. Image segmenta-
tion has been the major application domain for spectral based
algorithms. As such, spectral clustering performed well in identifying
the three circular clusters in Fig. 1. However, even without noise,
spectral clustering had problems in correctly identifying the two
spiral clusters.

Path-based clustering measures local homogeneity rather than
global similarity of data objects such as pixels in a digital image. It is
capable of identifying the two spirals and homogeneous texture
patches in digital images. Hence, like spectral clustering, it has proven
to be a useful tool in image segmentation [16,15]. Nevertheless, non-
homogeneous clusters such as clusters with varying densities remain

problematic. Combining path-based clustering with spectral clustering
provides a new paradigm known as path-based spectral clustering [8].
This combination is also mostly applied to image segmentation and is
able to segment the spiral and circular clusters in Fig. 1. Its user
defined neighborhood choice dependency makes it very sensitive to
noise as well as a poor candidate for non-homogeneous (e.g. varying
density) cluster identification. Additionally, the computational com-
plexity of path-based spectral clustering is fairly high.

Clustering based on shared nearest neighbors (SNNs) using a
distance function are appealing due to their intuitive simplicity.
Algorithms based on SNNs require a user's choice of a metric, a
number k of nearest neighbors, and a distance threshold that is
modifiable. The idea of SNNs was introduced by Jarvis and Patrick
[26]. They construct a SNN graph from a proximity matrix by
creating a link between a pair of points p and q if and only if p and
q have each other in their closest k nearest neighbor list. Several
variations and generalizations of the SNN approach have been
published since its first introduction [42,14,18,38]. One of the most
often cited variants is the DBSCAN shared nearest neighbor
method [14] (Density-Based Spatial Clustering for Applications with
Noise). The DBSCAN algorithm – as well as the proposed Simple
Statistics-based Nearest Neighbor (SSNN) algorithm described in the
next section – correctly identifies the 3 globular clusters shown in

Fig. 3. (a) 3 clusters found by c-means with initial cluster centers as indicated (seeds); (b) 3 clusters found using the alternative fuzzy c-means (fuzzy threshold ¼0.4);
(c) same as (b) but with variable threshold, and (d) alternative fuzzy c-means with seeds the centroids of 3 clusters derived by dividing the data into 3 equal parts.
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Figs. 2 and 4(b). However, DBSCAN needs two user specified
parameters: the ϵ parameter which represents an n-dimensional
ball of radius ϵ centered at a data point, commonly referred to as
the ϵ-neighborhood of that point and the minimal number k of
data points in an ϵ-neighborhood of a data point p that serves as
the basis for deciding the cluster membership of p. As a conse-
quence, DBSCAN performs poorly in correctly identifying clusters
that have large variation in densities. To increase performance and
overcome some of these problems, several generalizations of DBS
CAN have been proposed [35,2,7].

A more successful generalization of DBSCAN is the OPTICS
approach [2,7] (Ordering Points To Identify the Clustering Structure).
However, the basic approach is similar to DBSCAN in that the two
parameters ϵ and k are required even though ϵ plays a less
important role as each point is also assigned a core distance, which
is the distance to its k nearest neighbors. The number k¼4 is often
encountered and is probably due to a desire of reducing computa-
tional overhead. However, k¼4 is generally not a good choice for
high-dimensional data sets. Once the user supplied choice of k is
fixed and ϵ is chosen too large, then using the core distance may
create fewer clusters than are actually present in the data (see
Example 1 in Section 2).

2. SSNN clustering algorithm

In this section we discuss the SSNN approach to clustering and
provide some performance comparisons with several standard
algorithms cited in the Introduction. The new algorithm is a
consequence of our research efforts in autonomous endmember
detection for hyperspectral image segmentation [40]. In this research
we were in need of a fairly robust, yet simple, autonomous cluster
detection algorithm in somewhat noisy data. None of the standard
algorithms that we considered provided satisfactory results on real
data. Nearest neighbor approaches were the most attractive because
of their intuitive simplicity. The need for some statistical information
about point distances is also crucial as such information can provide
important insight into the spatial arrangement of the data points.
Two fundamental as well as simple measures are the mean and the
standard deviation of distances between points and their nearest
neighbors. Knowledge of these statistical measures can be used to
provide thresholds for noise or outlier removal and also cluster
detection. Suppose X ¼ fxξARn : ξ¼ 1;…; kg denotes the data set
under consideration and T ¼ fτj : τj ¼⋀ξa j dðxj;xξÞ; xξAXg denotes
the set of nearest neighbor distances associated with X. Our basic
measuring stick for creating nearest neighborhoods for clustering
data is the sum μþσ of the average and the standard deviation of
nearest neighbor distances given by T. Intuitively, one would like to
obtain parameters a and b for which ϵ¼ aμþbσ yields an ideal
clustering measure of nearest neighbors. Such values need to be
sensitive to the maximal nearest neighbor distance τ¼⋁k

j ¼ 1τj in
order to isolate outliers or noise. Although such values a and b can be
obtained for simple data with well defined clusters, there is no
known method for computing them for arbitrary data sets. In our
approach we used the relations αðμþσÞ ¼ τ and βðμþσÞ ¼ τþσ in
order to obtain the sensitivity parameters α and β used in the
formulation of the various ϵ values defined in the SSNN algorithm.
The different ϵ values are data dependent and a consequence of
various possible relationships between the statistical parameters
μ, σ, μþσ, τ, and the ratios α¼ τ=ðμþσÞ and β¼ αþσ=ðμþσÞ.
Another value that plays a more indirect role in the relationship
between μ and σ is the minimum closest neighbor distance
τmin ¼⋀k

j ¼ 1τj since τmin rμrτ. These relationships are given by
the following theorems:

Theorem 1.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2þσ2

p
rτ.

Theorem 2. α42=3, βZ1, and 0rβ�αo1.

Theorem 3. σrμ3β�αr1=2 and σ4μ3β�α41=2.

Theorem 4. If αZ1 and βr3=2, then σrμ.

Note that the lower bound 2/3 of α is the multiplicative inverse
of the decision boundary β¼3/2. For the next theorem let
Tmax ¼ fτjAT : τj ¼ τg, Tmin ¼ fτjAT : τj ¼ τmin g, m¼ jTmaxj, and
ℓ¼ jTminj, where jAj denotes the number of elements (cardinality)
of set A.

Theorem 5. τ�μZℓðτ�τminÞ=k and μ�τminZmðτ�τminÞ=k.
Proofs and further discussions of the theorems are given in the

Appendix. Henceforth, we let X ¼ fxξARn : ξ¼ 1;…; kg denote the
data set under consideration and given sets A and B, A n B denotes set
subtraction. The symbols � and 5 stand for approximately equal to
and much less than, respectively. The SSNN algorithm consists of two
parts. In the first part we apply two neighborhood based filters in
order to cluster data and remove noise, outliers and other artifacts.
Each filter is determined by a specific fixed number ϵ derived from the
nearest neighbor statistics computed in the first step (S1) of the
algorithm. These statistics are derived from the collection T of nearest
neighbor distances. The first filter provides for a rough listing of
possible clusters and sets up a remainder set R1 of possible outliers,
noise, or other artifacts of the data. However, if R1 ¼∅, then the
algorithm stops. The output consists of the clusters detected. If R1a∅,
then Part I of the algorithm repeats the whole procedure one more
time using the new set given by X0 ¼ X n R1 as the data set under
consideration. The ϵ derived from the NN-statistics of X0 provides for a
refined filter used to detect its clusters. The final output is a set of
clusters and a possible new remainder set R2. The remainder sets R1
and R2 are obtained by setting a threshold MZ1 which accumulates
all clusters Cℓ into the remainder set for which jCℓjrM. The set of all
clusters Cℓ for which jCℓj4M and the set R¼ R1 [ R2 constitute the
input to Part II of the algorithm. The value of the threshold M as well
as the second part will be discussed after specifying the four major
steps that constitute Part I of the algorithm.

SSNN Algorithm-Part I
Initialize t¼0, p¼0, X0 ¼ X, T ¼∅

S1 let p¼ pþ1; τ¼ 0 [Compute statistical parameters]
for xjAX
τj ¼⋀xξ AX;ξa jdðxj; xξÞ
if p¼1, T ¼ T [ fτjg else continue
τ¼ τ3τj

let μ¼ ð1=jXjÞ∑xj AXτj;σ2 ¼ ð1=jXjÞ∑xj AX ðτj�μÞ2,
α¼ τ=ðμþσÞ;β¼ αþσ=ðμþσÞ

if p¼1 case β43=2, ϵ¼ αμþσ
case βr3=2, ϵ¼ βðμþσÞ

else case β43=2 and σZμ, ϵ¼ βμþσ
case β43=2 and μ4σ, ϵ¼ μþβσ
case βr3=2, ϵ¼ βðμþσÞ

S2 [Initialize intermediate sets for the clustering process]
let t ¼ tþ1, Ct ¼Nt ¼∅, Xt ¼ Xt�1,
randomly choose xAXt , Bt ¼ fxg

S3 [Update intermediate sets and stopping criteria]
let Ct ¼ Ct [ Bt , Xt ¼ Xt n Ct

if Xt ¼∅ call Histogram to find M, Rp ¼⋃jCjjrMCj

else continue with next step S4
if p¼1 and Rp ¼∅, STOP [Clusters are given by Cj for j¼1,…,t]

else continue
if p¼1 and Rpa∅, let X ¼ X n Rp, t¼0, X0 ¼ X,

RETURN to step S1
else let R¼ R1 [ R2, STOP

[Part I of the SSNN is completed. All clusters Cj with jCjj4M
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are the clusters determined by Part I, R is the remainder set]
S4 for xjABt [Cluster detection loop]

for xξAXt

if dðxj;xξÞrϵ, Nt ¼Nt [ fxξg else continue
if Nt ¼∅ RETURN to step S2
else Bt¼Nt, RETURN to step S3

Before specifying the second part of the SSNN algorithm we
believe that it is instructive to discuss some of the parameters
generated and provide a few examples in order to better understand
the computational aspects and performance of Part I. Observe that the
algorithm does not specify a particular metric d. This allows the user
to implement his favorite metric. Unless otherwise specified we used
the L1 metric in the examples given in this paper. This choice was
mainly due to the computational simplicity of this metric. The basic
statistical parameters μ, σ, and τ¼⋁τj are derived from the set T of
nearest neighbor distances. Thus, the first objective of step S1 is the
derivation of the elements of T. Since T is referenced twice in Part I
(p¼1,2) and again in Part II, it is advantageous to use T as a look-up
table in order to reduce the computation time in all steps that require
its elements.

The parameters μ, σ, and τ are used to compute the sensitivity
parameters α and β. These five parameters determine the ϵ-radius for
the nearest neighbor clustering in step S4. Note that all choices are
dependent on whether βZ3=2 or βo3=2. The decision thres
hold 3/2 for determining ϵ is a consequence of the theorems
that establish the relationships between μ, σ, α, and τ. Since
βðμþσÞ ¼ τþσ, β provides a measure as to the difference between
the value τþσ vs μþσ. Thus, β43=2 indicates a large difference
between μþσ and τ. Hence, we can use a radius slightly larger than
μþσ but less than τ by multiplying μ by α in order to isolate outliers
and noise, i.e., single point clusters. This follows from the observation
that for β43=2 we have αZ1. Therefore, τZαðμþσÞ4αμþσ.
Similarly, a small value of βr3=2 means an even smaller value of α.
That is α� 1 and τ� μþσ with σ very small when compared to μ. In
this case, wewant ϵ to be slightly larger than τ to not separate clusters

of sets that are very close (within a distance only slightly larger than τ)
but whose elements have nearest neighbors a distance equal to or
close to τ. Some of the examples provided demonstrate the advantage
of this approach. For this reason we chose ϵ¼ βðμþσÞ ¼ τþσ. The ϵ
values for p¼2 and the new set X n R1 are chosen for analogous
reasons.

Another threshold that is in need of elucidation is the valueM. Step
S4 of the SSNN algorithm computes all possible clusters of points that
have nearest neighbors within a distance ϵ, including single point
clusters. Setting M¼1 suffices to eliminate all single point clusters.
However, for large data sets, especially those containing extraneous
artifacts (e.g. noise) as illustrated in Fig. 1, it often happens that there
is a large abundance of single clusters as well as a large number of
small clusters consisting of 2, 3, and more points. Since such data sets
are often encountered when dealing with real data, it is befitting to
establish a histogram once Xt ¼∅ in step S3. When this occurs, the
algorithm calls the following function:

Histogram
let m¼⋁t

ℓ ¼ 1jCℓj and hi¼0 for i¼1,…,m
for i¼1 to m
for ℓ¼ 1 to t

if i¼ jCℓj, hi ¼ hiþ1 else continue

For small data sets consisting of fewer than 50 points the number
h1 is generally either zero or fairly small. However, for large data sets
a large h1 is a real possibility and usually implies that the data is very
noisy or clusters are not well defined. Additionally, in case of
extremely large amounts of random noise there most likely will be
some noise points that are closer together (within the distance ϵ of
each other). As a result, the histogram exhibits an initial rapidly
decreasing sequence h1;…;hM40 with most hia0 for 1r irM.
This sequence is then followed by a significantly larger sequence
consisting entirely of zeros; that is, hMþ1 ¼ 0¼⋯¼ 0¼ hj�1ohj.
The number ð j�M Þ is called the zero gap. The beginning of the zero
gap corresponds to the numberM used for determining the sets Rp. If
there does not exist an initial decreasing sequence hi, that is hi¼0 for

Fig. 4. (a) The raw data set with five well defined clusters; (b) correct identification of the 5 clusters using only Part I of algorithm SSNN.
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i¼ 1;…;ℓ, with ℓZ2, thenwe setM¼1 as we do not consider single
point clusters as viable clusters. On the other hand, larger values ofM
can result in the elimination of clusters consisting of five or more
points which may not be desirable. This is one reason for reexamin-
ing the background R in Part II of the algorithm. The next examples
will illustrate some of these issues.

Example 1. For data sets consisting only of geometrically well
defined clusters without noise such as shown in Figs. 2 and 4(a),
the algorithm has no problems in correctly identifying all clusters and
terminates in Part I. Specifically, for the case presented in Fig. 2 we
have μ¼1, β¼ 1o1:5 and σ¼0 so that ϵ¼ βð μþσÞ ¼ τ¼ 1. The
corresponding histogram gives hi¼0 for i¼ 1;…;24 and
h25 ¼ h29 ¼ h138 ¼ 1. Thus, there is a large zero gap before hia0
and we setM¼1. With this value ofM the algorithm stops in the p¼1
cycle since R1 ¼∅. Similarly, for the data set shown in Fig. 4(a), we
obtain β¼ 1:452o1:5 so that ϵ¼ τþσ ¼ 0:0485þ0:0102¼ 0:0587.
The histogram gives hi¼0 for i¼ 1;…;298, with h299, h599, h999, h1400,
and h1900 equal to 1. Thus, the gap of zeros starting from h1 is

extremely large and, hence, M¼1 and R1 ¼∅. Again, the algorithm
terminates in Part I. Although this example of spirals and circles
within circles has a straight forward solution, it has been used by
numerous researchers to show that various cluster algorithms have
failed when confronted by this data [8,25,32].

Example 2. For a different example, we consider the heteroge-
neous data set shown in Fig. 5(a). This data set first appeared in
[42] as well as in Example 3 of [43] in slightly altered format due
to the addition of more points to both clusters, thus making the
clusters appear more homogeneous. For p¼1, one obtains
μ¼0.676, σ¼0.305, α¼1.53, and β¼ 1:84141:5 so that
ϵ¼ αμþσ ¼ 1:339. The resulting histogram yields h1 ¼ 2, h2 to
h30 ¼ 0 and h31 ¼ 1. Again, the zero gap between clusters contain-
ing a single point and the only other cluster is large, resulting in
M¼1. The resulting cluster and remainder set R1 are shown in
Fig. 5(b). Since R1a∅, p¼2; for this value of p and new set X n R1

one obtains σoμ and β¼1.779. Therefore, ϵ¼ μþβσ ¼ 1:052 and
two clusters C1;C2 are obtained containing 14 and 16 points,

Fig. 5. (a) Heterogeneous data set X with jXj ¼ 33; (b) for p¼1 and M¼1 the result is cluster C1 having 31 points and jR1j ¼ 2; (c) for p¼2 and M¼1 two viable clusters are
detected and jRj ¼ 3; (d) final 2 clusters detected by algorithm SSNN-Part II.
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respectively, as well as a one point cluster (see Fig. 5(c)). Hence,
M¼1 and jRj ¼ 3. Since Ra∅, the algorithm continues with Part II.

The input to Part II of the SSNN algorithm consists of the
remainder set R and the clusters Cℓ for which jCℓj4M. We assume
that these clusters have been relabeled sequentially as C1;…;CL. The
first step of Part II of the algorithm computes the statistical parameters
τ, μ, σ, α, β, and the appropriate ϵ for each cluster Cℓ. The objective is
to absorb remainder points within the distance ϵ of Cℓ into Cℓ. In this
scheme we have to provide a distance ϵ that is slightly larger than the
maximal nearest neighbor value τ of the set Cℓ. Note that the
algorithm terminates when either R¼∅ or the ℓ-loop ends.
Example 2 and the examples of Section 3 illustrate these two
scenarios.

SSNN Algorithm-Part II
S1 Initialize τ¼0

for ℓ¼ 1 to L [Compute statistical parameters of cluster Cℓ]
for xjACℓ

τj ¼⋀xξ ACℓ ;ξa jdðxj; xξÞ, τ¼ τ3τj
let μ¼ ð1=jCℓjÞ∑xj ACℓ

τj ; σ2 ¼ ð1=jCℓjÞ∑xj ACℓ
ðτj�μÞ2,

α¼ τ=ðμþσÞ; β¼ αþσðμþσÞ,
case β43=2 and σ4μ, ϵ¼ τþμ,
case β43=2 and σoμ, ϵ¼ τþσ,
case βr3=2, ϵ¼ ατþβσ,
case αr3=2 and β43=2, ϵ¼ ατþσ

S2 for xjACℓ [Merge appropriate background points with Cℓ]
for xξAR
if dðxj;xξÞrϵ, Cℓ ¼ Cℓ [ fxξg, R¼ R n fxξg
if R¼∅, STOP [Clusters are Cℓ for ℓ¼ 1;…; L] else

continue

Example 2 (continued). As mentioned, the input to Part II are the
two clusters C1;C2 and the remainder set R obtained from Part I
using the heterogeneous data set of Fig. 5(a). For ℓ¼ 1 one obtains
τ¼1, μ¼0.593, σ¼0.24, α¼1.2, and β¼ 1:489o1:5. Thus,
ϵ¼ ατþβσ ¼ 1:558. With this ϵ and ℓ¼ 1, three background
points are merged into C1 so that R¼∅ and the algorithm
terminates. As shown in [43], the c-means, fuzzy c-means, and
the alternative hard c-means were not able to identify these two
clusters correctly. However, the alternative fuzzy c-means did
correctly identify both clusters.

3. SSNN clustering performance

In many scenarios no a priori knowledge exists about the type
or number of clusters in a given data set. For most high-
dimensional data sets the number of clusters can be extremely
difficult if not impossible to ascertain before the start of a
clustering procedure. However, any good clustering method
should be able to autonomously find clusters if their topology is
reasonably well defined. In this section we examine the perfor-
mance of the SSNN algorithm by using several different data sets.

Example 3. In this example we consider the data set shown in
Fig. 6(a). This data set consists of 31 points and appeared in [43]
where it was shown that the c-means and fuzzy c-means failed to
correctly identify the two different size clusters. Both, the alter-
native fuzzy c-means and the SSNN algorithm had no problems in
correctly identifying the two clusters. The various stages of our
algorithm are illustrated in Fig. 6. This experiment was repeated
after modifying the data set by adding two outlier points to the
data as shown in Fig. 7 that get eliminated in Part I while p¼1.

Example 4. The data set shown in Fig. 8(a) appeared in [13] and
consists of 30 points. Visual inspection shows three disjoint
clusters and two outliers near the bottom right side of the square.
Part I of the SSNN algorithm with p¼1 yields the values shown in
the 1st row of Table 1 and ϵ¼ αμþσ provides for 3 clusters with
h1 ¼ 2, h2 to h27 ¼ 0 and h28 ¼ 1. Thus, M¼1 and jR1j ¼ 2. For p¼2,
the new set X n R1 yields the statistics shown in the 2nd row of the
same table. Since β41:5 and μ4σ, ϵ¼ μþβσ, and the cluster
detection step S4 finds 7 clusters with h1 ¼ 4, h2 to h5 ¼ 0 and
hi¼1 for i¼ 6;8;10, resulting in M¼1. Consequently, jR2j ¼ 4 and
jRj ¼ 6.

The remaining clusters are C1, C2, and C3 with jC1j ¼ 6, jC2j ¼ 8,
and jC3j ¼ 10; their statistics are given in the last three rows of
Table 1 where ϵ¼ ατþβσ. Starting Part II with ℓ¼ 1 we obtain
3 clusters with h1 ¼ 2 and h10 ¼ 1. Thus, 4 background points
merged with C1 and 2 remain in the background. For ℓ¼ 2 and
ℓ¼ 3 no further merger took place and the algorithm stops. The
final result are the clusters C1, C2, and C3 displayed in Fig. 8(d). The
unweighted nearest neighbor graph method presented in [13] also
eliminated the two outlier points and discovered the C1 cluster.
However, due to thresholding problems clusters C2 and C3 were
identified as a single cluster. The same problem occurred when
employing the NN method suggested in [38].

Example 5. Data sets similar to the one displayed in Fig. 9 have
been tested by several researchers [13,2,43,38]. The data set used
here consists of 1748 points. The two cluster centers are clearly
visible. However, visual inspection cannot ascertain with absolute
certainty the cluster membership of several points. Although fuzzy
membership approaches may be helpful in this case, most varia-
tions of the fuzzy c-means method still require user defined
number and location of seed points. Visual inspection, however,
is impossible for high-dimensional data sets. If by luck we chose
c¼2 and divide the data set into two sets, each consisting of
874 randomly chosen points, and then apply the alternative hard
c-means or fuzzy c-means, the results would be as shown in
Fig. 10. Here we assigned a point to a cluster if its membership
fraction for this cluster was greater than its membership number
for the other cluster. Visually, there is little difference between the
alternative hard c-means and the alternative fuzzy c-means. Both
exhibit an almost linear separation. In comparison, when using
Part I of the SSNN algorithm, then for p¼1 the initial statistics
are shown in Table 2 (row 1). With ϵ¼ αμþσ clustering results in
36 clusters and the histogram yields: h1 ¼ 21, h2 ¼ 7, h3 ¼ 4,
h4 ¼ h5 ¼ 1, h6 ¼ h7 ¼ 0, h8 ¼ 1, h9 to h1683 ¼ 0, and h1684 ¼ 1.
Therefore M¼8, which results in one cluster with 1684 elements
and jR1j ¼ 64 (cf. Fig. 9(b)).

For p¼2, the statistics associated with the new set X n R1 are
given in Table 2 (row 2). With ϵ¼ βμþσ we obtained 23 clusters
with histogram h1 ¼ 9, h2 ¼ 8, h3 ¼ 1, h4 ¼ 0, h5 ¼ 1, h6 to h8 ¼ 0,
h9 ¼ 1, h10 to h13 ¼ 0, h14 ¼ 1, h15 to h377 ¼ 0, h378 ¼ 1, h379 to
h1249 ¼ 0, and h1250 ¼ 1. Thus, M¼14, clusters C1;C2 with
jC1j ¼ 378; jC2j ¼ 1250 were found as well as a remainder set R2
with jR2j ¼ 56 and jRj ¼ 120 (see Fig. 9(c)). After Part II, cluster C1
grows by 32 points while C2 remains unchanged.

Example 6. Another large and noisy data set is Jain's example
displayed in Fig. 1. This data set consists of 8537 points and has
been the bane of clustering algorithm developers. Applying Part I
of SSNN results in the values listed Table 2 (row 3). Thus
ϵ¼ αμþσ, and clustering yields the histogram h1 ¼ 75, h2 ¼ 19,
h3 ¼ 9, h4 ¼ 5, h5 ¼ 1, h6 ¼ 3, h7 ¼ 2, h8 ¼ 1, h9 ¼ 2, h10 to h1287 ¼ 0,
and h1288 ¼ 1. Therefore, M¼9 which results in jR1j ¼ 223 and
4 viable clusters consisting of the 3 circles and the 2 spirals. The
upper and lower left globular sets within each cluster have some
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nearby noise attached. The union of these clusters make up the
new set X n R1 shown in Fig. 11(a). For p¼2 the statistics of the
new set are provided in row 4 of Table 2. Since ϵ¼ βμþσ, the
clusters found in step S4 yield the histogram h1 ¼ 85, h2 ¼ 13,
h3 ¼ 6, h4 ¼ 1, h5 to h300 ¼ 0, h301 ¼ 1 so that M¼4. With this
threshold we get 7 clusters C1;…;C7. Here C1 is the globular
cluster on the bottom left of Fig. 11(b) with jC1j ¼ 1633, C2 (red) is
the outer spiral with jC2j ¼ 1941, C3 (green) is the inner spiral with
jC3j ¼ 1412, C4 (blue) is the outer circle with jC4j ¼ 1018, C5 is the
globular cluster on the top left with jC5j ¼ 1266, C6 is the middle
circle with jC6j ¼ 610, and C7 is the innermost circle with
jC7j ¼ 301. Also, jR2j ¼ 133 resulting in a background R consisting
of 356 points. During the merging procedure (Part II) clusters C1, C3,
C4, C6, and C7 remain the same. Cluster C2 adds 2 points while cluster
C5 accumulates 12 points from the background. Comparing the
results of Part II shown in Fig. 11(c) with those shown in Fig. 11(b),
it is clear that had we stopped with the results obtained from Part I
we would not have included as many noise points with the spiral
clusters but would have missed adding valid cluster points to the
globular cluster C5.

The examples given thus far are 2-dimensional sets as such data
can be visualized. High dimensional patterns loose this desirable
property and are, therefore, seldom used for demonstration purposes.
However, one type of high dimensional pattern vectors that can be
displayed in 2D are images. Using the standard row-scan method, an
m�n image p can be converted into an mn-dimensional pattern

vector x¼ ðx1;…; xmnÞ by defining xnði�1Þþ j ¼ pði; jÞ for i¼1,…,m and
j¼1,…,n. Clustering images has long been an active area of investiga-
tion in computer vision and database research [3,12,19,20,23]. Pro-
blems arising in image clustering are numerous. We conclude this
section by examining the performance of the SSNN algorithm when
confronted with images.

Example 7. The grayscale face images of 5 different persons
displayed in Fig. 12 are of size 44� 32 and were taken under
different illuminating conditions. The 25 images are a small subset
of the CMU PIE Face Dataset [37]. This data set as well as the Yale
Face database [20] have yielded at best some moderate successes
to clustering approaches. Some of the best clustering perfor-
mances were achieved by two algorithms developed by J. Ho
and his colleagues [23]. Applying the SSNN algorithm to the
image set X ¼ fx1;…; x25g results in the statistics shown in Table 2
(row 5). Accordingly, ϵ¼ τþσ and clustering yields 5 clusters with
histogram h1 to h4 ¼ 0 and h5 ¼ 5. Thus, M¼1, R1 ¼∅, and the
algorithm stops.

Example 8. A set of 35 binary images of size 50�50 (see Fig. 13)
have been corrupted by random impulsive noise in multiples of 5%
applied to five different noiseless images. If f represents the percen-
tage of random noisy pixels, then f λ ¼ 5λ, where λ¼ 0;…;6. If λ¼0, a
noiseless image results while if λ¼6 the image is corrupted by 30%. In
this example, instead of using the L1 metric we apply the L1 metric
dðx; yÞ ¼∑n

i ¼ 1jxi�yij. With this metric, the initial statistics for p¼1

Fig. 6. (a) The data set X, jXj ¼ 31; (b) for p¼1, 2 clusters result with histogram h1 ¼ 1¼ h30 with hi¼0 for 1o io30, thus, M¼1 and jR1j ¼ 1; (c) for p¼2 and M¼1, 2 viable
clusters are detected and jRj ¼ 2; (d) final 2 clusters identified by SSNN-Part II.
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of the image set X ¼ fx1;…; x35g are listed in Table 2 (row 6). Since
βr1:5, ϵ¼ τþσ yields 5 clusters whose histogram is h1 to h6 ¼ 0
and h7 ¼ 5 so that M¼1 and R1 ¼∅.

4. Conclusions

We establish a new clustering algorithm based on simple
statistical parameters derived from the set of nearest neighbor
distances of points of a given data set. The ϵ-value defining nearness
for clustering points is based on the interrelationship of the max-
imum value τ, the mean μ, and the standard deviation σ of the set of
minimal distances. Two sensitivity parameters α and β connect τ
with μ and σ. The values of the five parameters τ, μ, σ, α, and β are

the key for the determination of the nearness distance value ϵ. The
decision as to which arithmetic combination of these five parameters
should be used for the computation of ϵ was derived from the five
theorems listed in Section 2 as well as testing clustering performance
on a large number of different data sets. On all the data sets that we
tested, the SSNN algorithm performed at least as well as other
current algorithms (that were either easily available or implemen-
table) and in several cases exhibited superior performance, e.g., Jain's
example. In addition to its simplicity, another appealing feature of
the SSNN algorithm is that no starting values such as ϵ-parameters,
minimum points or the number k for k nearest neighbors have to be
set by the user. Hence, the algorithm runs autonomously and differs
from algorithms based on the c-means, k-nearest neighbor, OPTICS,
or DeLiClu [1] approaches. The data sets used in Examples 1–8 can

Fig. 7. (a) Data set X with jXj ¼ 33 and two outlier points x32 ¼ ð10;7Þ and x33 ¼ ð27;7Þ (outside the graph); (b) for p¼1, h1 ¼ 2 and h31 ¼ 1 so that M¼1 and R1 ¼ 2, the
resulting clusters are as shown; (c) for p¼2, M¼1 is obtained and two viable clusters are detected where jRj ¼ 4; (d) final 2 clusters detected by algorithm SSNN-Part II.
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be found at http://cise.ufl.edu/�ritter/dataset.zip. Despite its excel-
lent performance on a large variety of data sets, we do not claim that
the SSNN technique is superior to other methods when applied to
any data set. It has its own inherent weaknesses. Foremost among

these is the single link problem [24], i.e., if there is a chain of single
points between two clusters, then the two clusters may not be
separated. This would be the case when each point in the chain has a
nearest neighbor within the computed ϵ distance. However, remov-
ing or cutting single chains has its own inherent problems. For
instance, consider the configuration of points in Fig. 14.

Cutting single link chains would result in 4 clusters. But should this
be a single cluster or four separate clusters? To some researchers it
will be one cluster but others will say four. In various non-trivial
digital topology applications the data represented by Fig. 14 would be
classified as a single connected component and therefore a single
cluster [21]. This brings us back to Section 1 of this paper. There is no
cure-all clustering mechanism since there is no rigorous mathema-
tical definition of a cluster. Clusters are defined in terms of similar-
ity measures, and these vary widely and are data and application

Fig. 8. (a) Data set X, jXj ¼ 30; (b) for p¼1 the algorithm finds M¼1, one viable cluster (28 points), and a remainder set R1 (2 points); (c) for p¼2 the results are M¼1,
3 viable clusters, jR2j ¼ 4, and jRj ¼ 6; (d) the final 3 clusters detected by algorithm SSNN-Part II.

Table 1
Computed statistical parameters and sensitivity values for Example 4.

Variable τ μ σ α β ϵ

p¼1 5.6 1.677 1.137 1.990 2.394 4.474
p¼2 2.8 1.436 0.701 1.310 1.638 2.584

C1 2.5 2.050 0.206 1.081 1.172 2.944
C2 1.4 0.975 0.222 1.169 1.355 1.937
C3 1.5 0.940 0.229 1.283 1.479 2.263
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Fig. 9. (a) Data set X with jXj ¼ 1748; (b) for p¼1, threshold M¼8 provides one viable cluster C1 with 1684 points and jR1j ¼ 64; (c) for p¼2, M¼14 and 2 viable clusters
C1 ;C2 are obtained. Also, jR2j ¼ 56 and jRj ¼ 120; (d) final 2 clusters obtained by SSNN-Part II.

Fig. 10. Left, 2 clusters obtained with the alternative hard c-means algorithm; right, similar result using the alternate fuzzy c-means algorithm.
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Table 2
Computed statistical parameters and sensitivity values for Examples 5–8.

Variable τ μ σ α β ϵ

p¼1, Ex.5 1.256 0.0624 0.1095 7.307 7.944 0.565
p¼2, Ex.5 2.800 0.0473 0.0626 25.478 26.048 1.295

p¼1, Ex.6 3.037 0.0881 0.1877 11.012 11.693 1.158
p¼2, Ex.6 1.079 0.0659 0.0987 6.555 7.155 0.570

p¼1, Ex.7 28,209 18,206 6907 1.123 1.398 35,116

p¼1, Ex.8 134 118.91 7.1529 1.063 1.120 141.15

Fig. 11. (a) The new set X n R1 and R1; (b) background and the 7 clusters obtained for p¼2; (c) final 7 clusters obtained with algorithm SSNN-Part II.

Fig. 12. Left, set of input grayscale images; right, the 5 clusters found by the SSNN algorithm where cluster Cj corresponds to the jth column and j¼ 1;…;5.
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dependent. For instance, at the beginning of Section 2 we mentioned
hyperspectral image segmentation where single point clusters play an
important role as they often represent endmembers, which are vital
for unmixing pixel spectra.
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Appendix

It follows from the definition of μ and σ that τmin rμrτ and
0rσrτ. These two inequalities are the main tools in the proofs of
the theorems.

Proof of Theorem 1.

σ2 ¼ ∑
k

i ¼ 1
ðτi�μÞ2=k¼ ∑

k

i ¼ 1
ðτ2i �2μτiþμ2Þ=k

r ∑
i ¼ 1

ðτ2i �2μ2þμ2Þ=k¼ ∑
k

i ¼ 1
τ2i =k� ∑

k

i ¼ 1
μ2=k

r ∑
k

i ¼ 1
τ2=k� ∑

k

i ¼ 1
μ2=k¼ τ2�μ2 or μ2þσ2rτ2;

where the first inequality follows from μrτ and the second from
τirτ □

A result of Theorem 1 is that for a given finite set T of minimal
distances, the domain Df of function f ðμ;σÞ ¼ μþσ must be a subset
of the shaded region bounded by the quarter circle shown in Fig. 15.
Since we also have the inequality 0oτmin rμ, Df must be a strict
subset of the shaded region. It becomes clear that μ-τ implies that
σ-0 and σoμ or, more precisely, that limμ-τf ðμ;σÞ ¼ τ. Another
fact illustrated in the figure is that if p¼ ðp0; p0Þ corresponds to the

Fig. 13. Left, set of input binary images; right, the 5 clusters found by the SSNN algorithm where cluster Cj corresponds to the jth column and j¼ 1;…;5.

Fig. 14. One cluster or four clusters?.
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intersection of the quarter circle and the line μ¼ σ, then σoμ
whenever p0oτmin.

Proof of Theorem 2. We first prove that α42=3. Suppose to
the contrary that αr2=3. Then τr ð2=3ÞðμþσÞ or, equivalently,
3τr2ðμþσÞ. It follows from Theorem 1 that 9ðμ2þσ2Þr
9τ2r4ðμþσÞ2 ¼ 4ðμ2þσ2Þþ8μσ. Thus, 5ðμ2þσ2Þ�8μσr0. But
4ðμ2þσ2Þo 5ðμ2þσ2Þ and we obtain the contradiction that
0r ð2μ�2σÞ2 ¼ 4ðμ2þσ2Þ�8μσo0. To prove the fact that βZ1
we again employ reductio ad absurdum. Thus we suppose that βo1.
Then ðτþσÞ=ðμþσÞo1 or τþσoμþσ. Solving for τ we obtain the
contradiction that τoμ. The proof of 0rβ�αo1 follows from the
definition of α and β. □

Proof of Theorem 3. Since β�μ¼ σ=ðμþσÞ we have

σrμ32σrσþμ32r ðσþμÞ=σ3σ=ðμþσÞr1=2:

The argument for μoτ31=2oσ=ðμþσÞ is analogous. □

Proof of Theorem 4.
β�αr3=2�αr3=2�1¼ 1=2:

The result now follows from Theorem 3. □

Proof of Theorem 5.

μ¼ ∑
k

i ¼ 1
τi=k¼ ½ℓτminþ ∑

τi aτmin

τi�=kr ½ℓτminþðk�ℓÞτ�=k

¼ ½kτþℓτmin�ℓτ�=k¼ τþℓðτmin�τÞ=k

Subtracting μ and ℓðτmin�τÞ=k from both sides of the inequality
gives the desired result. Similarly,

μ¼ ∑
k

i ¼ 1
τi=kZ ½mτþðk�mÞτmin=k�

¼ ½mðτ�τminÞþkτmin�=k¼mðτ�τminÞ=kþτmin:

Subtracting τmin from both sides of the inequality yields the
desired result □

Theorem 5 provides lower bounds for τ�μ and μ�τmin that
are dependent on the number of occurrences of τ and τmin in
the collection T and the number k, but independent of μ. Since the
distance τ�τmin ¼ ðτ�μÞþðμ�τminÞ, the theorem provides ano-
ther tool for visualizing the relationships of the basic statistical
measures used in the SSNN algorithm. For instance, if p0rτmin,
then we have another quarter circle restriction of the domain Df. In

this case the circle is given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτ�μÞ2þσ2

q
¼ τ�τmin since the

additional restriction is due to the inequality ðτ�μÞ2þσ2r
ðτ�τminÞ2 whenever p0rτmin.
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