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A model that considers a photoinduced lens with a focal length dependent on a real power of the incident beam radius
is compared with other reported models employed to describe the z-scan curves for thick media. It is demonstrated that
this model is equivalent to that used to describe z-scan curves for thin nonlocal nonlinear media; then an extension is
made for thick nonlocal nonlinear media. A comparison is made with other models to obtain z-scan curves for thick
media. It is demonstrated that, under the same conditions, remarkable differences can be found in the simulated z-scan
curves.
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1. Introduction

Characterization of the nonlinear optical properties of
materials can be done using different methods. The
z-scan technique is one of the most used due to its
simplicity and accuracy. With this technique it is possible
to obtain the sign and magnitude of the nonlinear refrac-
tive index, n2, of a sample. The technique consists of
displacing the sample along the optical axis (z-direction)
of a focused laser beam, generally with Gaussian distri-
bution, and detecting the transmitted power at the far
field. This technique was first described theoretically and
experimentally by Sheik-Bahae et al. [1]. A complete
study of the main parameters that affect the technique
was made by Chapple et al. [2]. Different modifications
have been suggested in order to increase its sensitivity
and its use with polarizing materials [3–9]. The z-scan
technique is not restricted to implementation with Gauss-
ian beams; other beam intensity distributions can be used
[10–17].

There are different approaches to explain theoreti-
cally the technique for thin optical media. The first
approach [1] was obtained using the Gaussian decompo-
sition method [18], which is limited to samples with
small phases. Samad et al. [19] used the Huygens–
Fresnel principle to obtain an analytical expression of
the on-axis far-field electric field and it was not limited
to small phases. Since then, different approaches
have been proposed and some of them employ of the

aberration free approximation [20–24]. In [24], the non-
linear optical response of a thin media, under Gaussian
illumination, was modeled as a photoinduced lens with a
focal length dependent on the incident beam radius to a
real power. Characteristics of the z-scan curves, such as
peak–valley separation, peak–valley transmittance differ-
ence, and transmittance far from the focus, were found
to be dependent on this power. The first model to
describe the z-scan curves of thick media with Kerr
nonlinearity was realized by Banerjee et al. [25]. Other
models employing the aberration free approximation
were reported in [26] and [27]. A model that considered
the thermo-optical effect in the presence of linear and
nonlinear absorption was presented in [28]. Zang et al.
[29] proposed a model, using the Gaussian decomposi-
tion method and the distributed lens method, to analyze
the z-scan technique for thick optical nonlinear media
with nonlinear refraction and absorption. Pálfalvi et al.
[30] presented a theory based on the solution of the non-
linear paraxial wave equation and the Huygens–Fresnel
principle; this theory is valid for any sample thickness
and large nonlinearities including both nonlinear
refraction and absorption.

In this paper, we present an extension of the model
of [24]. In the thin case, this model is compared with a
nonlocal model to demonstrate their equivalence. The
results obtained with this model are compared to those
obtained with three other models used to describe the
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z-scan technique in thick media. Correspondences and
differences are found for the different approaches. In the
next section we describe the main results of the focal
length model for thin media and its equivalence with a
nonlocal model. In Section 3 we present the results
obtained for thick media. In Section 4 we present a com-
parison of this model with the models reported by Magni
et al. [26], Pálfalvi et al. [28] and Zang et al. [29], using
the experimental parameters reported by Chapple et al.
[31]. In Section 5 we present the conclusions of this
work.

2. Thin media

The photoinduced focal length model was reported by
Reynoso et al. [24] for thin media. There, the nonlinear
response of the material, when it is illuminate by a
Gaussian beam with beam waist ω0, was considered as a
photoinduced lens with a focal length F given by

F ¼ arx
r ð1Þ

where ar is a constant with the adequate units, that can
include some parameters of the material, ω = ω0[1 + (z/
z0)

2]1/2 is the incident beam radius at the position z, z0 is
the Rayleigh distance given by z0 = πω0

2/λ, λ is the
wavelength of the beam, and r is a real number that
describes the type of nonlinearity of the material [24].
Under these considerations the far field normalized trans-
mittance T was given by:

T ¼ F2

z20 þ ðF � zÞ2: ð2Þ

The main results obtained with this model, for small
nonlinearity (F > z0), were that the peak–valley position
difference, Δzp–v, given by

Dzp�v ¼ 2ffiffiffiffiffiffiffiffiffiffiffi
r � 1

p z0 ð3Þ

and the peak–valley transmittance difference ΔTp-v, given
by

DTp�v ¼ 2Dzp�v

F0r

ðr � 1Þr
rr

� �1=2
ð4Þ

where F0r = arω0
r depended on the value of r. Another

important characteristic of the z-scan curves obtained
with this model was that different values of r produced
different behavior of the normalized transmittance with
the position. This model was used to fit experimental
results with good agreement. Two cases were considered,
the first one with r = 2 for a dyed solution sample [32],

and the second one with r = 3 for a dyed doped liquid
crystal sample [33].

Recently, a model to describe the z-scan curves for
thin nonlocal media was reported [34], where the peak
valley position difference and the dependence of the nor-
malized transmittance with position depended on the
degree of nonlocality of the sample. Furthermore, the
same set of experimental results (dyed solutions and
liquid crystals) were fitted to the nonlocal model with
good agreement. Thus, both models are equivalent and
they can be used to describe nonlinear nonlocal media.
This was demonstrated obtaining the z-scan curves
under the same conditions but with different degrees of
nonlocality [34] for only refractive nonlinearity. The
z-scan curves obtained using Equation (1) presented a
larger ΔTp-v and smaller Δzp-v compared to those
obtained in [34] for values of r < 3.5, whereas the differ-
ences were smaller for r > 3.5, as shown in Figure 1.
The magnitude of ar was adjusted to reproduce the
behavior of samples with an on-axis phase shift, ΔΦ0,
equal to 0.1 rad and it was noted that both parameters
are inversely related.

3. Z-scan for thick nonlocal media

To obtain the z-scan curves of thick samples with refrac-
tive nonlinearity illuminated with Gaussian beams we
considered the thick sample as in the distributed-lens
method [27]. The physical length of the sample L was
divided in l units consisting of a thin lens, with a focal
length of the type of Equation (1), and a linear media
with refractive index n and length d = L/l. Knowing the
beam waist of the incident Gaussian beam and using
ABCD matrices for each unit, it is possible to calculate,
numerically, the normalized transmittance of the z-scan
technique. It is important to mention that in this case it
is not possible to obtain an analytical formula for the
normalized transmittance or a simple ABCD matrix for
the thick media.

The behavior obtained for the z-scan curves with this
model for different thickness samples is shown in
Figures 2–4. In Figure 2, a photoinduced focal length
lens with r = 4 and refractive index n = 1.63 was con-
sidered. The illuminating light was a Gaussian beam
with ω0 = 8.9 μm at λ = 532 nm (z0 = 0.46 mm). In
Figures 3 and 4, we considered a photoinduced focal
length lens with r = 2 and r = 5 and the rest of the
parameters were equal to the ones used in Figure 2. For
all the following calculations d was set equal to ω0.

Figure 2 shows the z-scan curves for r = 4. The
peak–valley position difference, Δzp-v, increased as the
thickness of the sample increased; the peak moved close
to the origin and the valley away from it. The zp-v for
thicknesses larger that 2z0 is approximately given by the
length of the cell divided by n. The amplitude of the
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peak increased for lengths of the sample smaller than
10z0, for thicker samples the amplitude of the peak did
not change. A similar behavior was observed for the
valley. The width of the peak (valley) was smaller than
1.5z0, giving rise to a region, between the peak and
valley, with normalized transmittance close to one for
the longest sample.

In Figure 3, the z-scan curves for r = 2 are presented.
In general, a similar behavior to that obtained with r = 4
is observed; however, two main differences arise. The
amplitude of the peak (valley) increased as the thickness
of the sample increased. The width of the peak (valley)
is larger than 4z0, and there is a region between the peak
and the valley where the normalized transmittance
changes linearly with position.

In Figure 4 we plot the z-scan curves obtained for
r = 5. We can observe that they exhibit a similar
behavior to the one obtained with r = 4. However, there
are differences in the widths of the valley and the peak;
they are thinner than those obtained in Figure 2. The
amplitude of the peak increased for lengths of the sample
smaller than 5z0, and for larger samples the amplitude of
the peak did not change. A similar behavior was
observed for the valley.

In Figure 5 we plot the peak–valley transmittance
difference, ΔTp-v, as a function of the width of the
sample for different values of r (r = 2 and a2 = 1 � 108,
r = 3 and a3 = 4.2 � 1010, r = 4 and a4 = 2.6 � 1013,
and r = 5 and a5 = 1.9 � 1016). A refractive index of n
= 1.63 was considered, the rest of the parameters were
the same as the ones in the previous figures. It can be
observed that as r increased, ΔTp-v reached a constant

Figure 3. Numerical z-scan curves for a sample with r = 2
(a2 = 1 � 108) and sample thickness of: z0 (line), 2z0 (dashed
line), 5z0 (dotted line), 10z0 (dashed-dot line), and 20z0 (point).
The other parameters are the same as for Figure 2.

Figure 2. Numerical z-scan curves for a sample with r = 4
(a4 = 2.6 � 1013) and n = 1.63, illuminated with a Gaussian
beam of ω0 = 8.9 μm at λ = 532 nm and sample thickness of:
z0 (line), 2z0 (dashed line), 5z0 (dotted line), 10z0 (dashed-dot
line), and 20z0 (point).
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Figure 1. Z-scan curves using Equation (1) (solid line) with: (a) r = 3.15 and ar = 3 � 109 and (b) r = 4.3 and ar = 3.8 � 1013 and
z-scan curves using [34] (dashed line) with: (a) m = 2 and ΔΦ0 = 0.1 rad and (b) m = 4 and ΔΦ0 = 0.1 rad. For an incident
Gaussian beam with ω0 = 8.9 μm and λ = 532 nm. (The color version of this figure is included in the online version of the journal.)
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value more rapidly. For thin samples, another point to
note is that at the beginning all the curves have similar
amplitudes, but as the length increased smaller values of
r produced curves with larger amplitude.

In order to see the differences due to different values
of r for the same cell length, in Figure 6 we plot the z-
scan curves obtained for a cell length of 20z0 and values
of r = 2, 3, 4, and 5. The rest of the parameters were the
same as the ones employed in Figures 2 to 4. The mag-
nitude of the constant used was chosen to give almost
the same peak amplitude. As mentioned previously, the
width of the peak increased as r decreased. The position
of the peak is almost at z/z0 = 0. However, the position
of the valley depended on r. Δzp-v increased as r
decreased. This behavior is very similar to the one
obtained for a thin sample and different values of r [24].

Finally, it is important to mention that the same
behavior is observed when the nonlinearity is negative

but with a difference in the amplitude of the curve, as is
demonstrated in Figure 7, where two z-scan curves were
obtained for the same constant magnitude, the same
value of r, and the same cell thickness. It is observed
that the curve for positive nonlinearity has a larger ΔT,
whereas the position of the peak and valley for the two
cases is practically the same.

The models proposed in other works for z-scan of
thick media are for a local Kerr nonlinearity, the model
presented here allows us to adjust different characteristics
of the z-scan curve by changing the magnitude of r. In
the next section we show how our model compares with
some specific models.

4. Local models

In order to compare the results obtained with our model
to the ones obtained with other models reported in the
literature, in this section we described three different

Figure 6. Numerical z-scan curves for a sample thickness of
20z0 for different r: r = 2 with a2 = 1 � 108 (line); r = 3, a3 =
4.2 � 1010 (dashed line); r = 4, a4 = 2.6 � 1013 (dotted line);
and r = 5, a5 = 1.9 � 1016 (dash-dot line). The other
parameters are the same as for Figure 2.

Figure 7. Numerical z-scan curves for a sample with r = 4
and n = 1.63, illuminated with a Gaussian beam of ω0 = 8.9
μm at λ = 532 nm and sample thickness of 10z0 with: a4 = 2.6
� 1013 (line) and a4 = �2.6 � 1013 (dashed line).

Figure 5. Numerical peak–valley transmittance difference as a
function of the cell length (Lt) by different values for r. The
other parameters are the same as for Figure 2.

Figure 4. Numerical z-scan curves for a sample with r = 5
(a5 = 1.9 � 1016) and sample thickness of: z0 (line), 2z0
(dashed line), 5z0 (dotted line), 10z0 (dashed-dot line), and 20z0
(point). The other parameters are the same as for Figure 2.
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approaches employed to describe the z-scan curves of
thick media. The first model that we considered was that
proposed by Magni et al. [26], the second by Pálfalvi
et al. [28], and the third by Zang et al. [29].

4.1. Model 1

The model proposed by Magni et. al. [26] is based on
the aberration free approximation, where the propagation
of the Gaussian beam in the Kerr medium of length d is
obtained with the following ABCD matrix:

M ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� c

p 1 de
�c=½ð1� cÞde� 1

� �
; ð5Þ

where de = d/n0 is the effective length of the medium,
n0 is the refractive index of the medium and γ is defined
as:

c ¼ 1þ 1

4

2px2
c

kde
� kde
2px0

� �2
" #�1

P

Pc
ð6Þ

where ωc is the spot size at the center of the medium,
ω0 is the spot size at the beam waist, P is the incident
power of the beam, and Pc is the critic power for self-
focusing. This matrix is valid only for γ < 1. Note that
when P/Pc tends to 0 the matrix reduces to the one for
the propagation of a Gaussian beam in a homogeneous
medium of refractive index n0.

4.2. Model 2

The model proposed by Pálfalvi et al. [28] divides the
thick medium in thin slices and compares each slice with
a material with a gradient refractive index. The propaga-
tion of the incident Gaussian beam is obtained consid-
ered the following ABCD matrix:

M ¼
cos lm

lef =np

� �
lef � sin lm

lef =np

� �
� 1

lef
� sin lm

lef =np

� �
cos lm

lef =np

� �
2
4

3
5; ð7Þ

where lm is the thickness of nonlinear medium, np is the
number of slices that the medium was divided and lef is
the effective length defined as:

Figure 8. Numerical z-scan curves for the models for Kerr nonlinearity with n = 1.63 and illuminated with a Gaussian beam of
ω0 = 8.9 μm at λ = 532 nm and sample thickness of: 1z0 (line), 2z0 (dashed line), 5z0 (dotted line), 10z0 (dashed-dot line), and 20z0
(point). (a) Model of focal length with r = 4 (a4 = 3.4 � 1013); (b) model of Magni et al. [26] with P = 0.24; (c) model of Palfalvi
et al. [28] with n2 = 2.7 � 10-5; (d) model of Zang et al. [29] with Cϕ(t) = 0.35.
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l2ef ðzÞ ¼
n0x4ðzÞ þ n2I0x2

0x
2ðzÞ

4n2I0x2
0

ð8Þ

where n2 is the nonlinear refractive index of the media,
I0 is the on-axis intensity of the incident beam, and ω(z)
is the beam radius at the position of the input face of the
media.

4.3. Model 3

The last model that we consider is in fact a formula for
the normalized transmittance of the z-scan technique
proposed by Zang et al. [29]. They used the Gaussian
decomposition method and a distributed lens model to
obtain the following formula for the normalized transmit-
tance T:

T ¼ ½ðxþ lÞ2 þ 1� � ½ðx2 þ 9Þ�
½ðxþ lÞ2 þ 9� � ½ðx2 þ 1Þ�

( )CuðtÞ=4

; ð9Þ

where:

CuðtÞ ffi DuRðtÞ þ tanhðl=3Þ
� ½DuRðtÞ�2=4þ ½DuRðtÞ�3=16
	 
 ð10Þ

and l = L/z0 is the length of medium, x = z/z0 and
ΔϕR(t) = kΔn0(t)z0.

In Figure 8 we show the results obtained with our
model and the ones obtained with the models proposed
by Magni et al. [26], Pálfalvi et al. [28], and Zang et al.
[29] for a medium with Kerr nonlinearity and sample
thicknesses of 1z0, 2z0, 5z0, 10z0, and 20z0; the other
parameters are the same as those employed in the previ-
ous section.

A comparison of the z-scan curves obtained with our
model (Figure 8(a)) with those obtained with the model of
Magni et al. [26] (Figure 8(b)) shows differences in the
position and width of the peak and the valley; in our model
the peak (valley) is wider than the one obtained from [26].

The position of the peak obtained in the z-scan
curves for the models of [28] (Figure 8(c)) and [29]
(Figure 8(d)) is very similar to the one obtained with our
model (Figure 8(a)). However, the position of the valley
was different. The width of the peak and the valley for
the curves obtained with the model presented in [28] is
smaller than the one obtained with the model of [29] and
our model.

The peak and valley transmittance of the z-scan
curves obtained with our model and that proposed in
[26], [28], and [29], for sample lengths of 5z0, 10z0, and
20z0 was very similar for all models. Differences arose
for sample lengths of 1z0 and 2z0 in all models. It is
important to mention that the parameters selected for the

calculation of the z-scan curves were the same as the
ones used experimentally in [31]. We notice that our
results reproduced with very good agreement the results
reported in that paper.

5. Conclusions

In this paper we have demonstrated that a model that
considers the nonlinear response of a thin nonlinear
media as a lens with a focal length dependent on a real
power r of the beam radius gives similar results to the
ones obtained for nonlocal nonlinear media. This model
was used to obtain z-scan curves of thick media for dif-
ferent nonlocalities, demonstrating that some characteris-
tics of the curve depended on the r parameter. This
model was compared with other models used to describe
the z-scan technique for thick media, obtaining that the
model we proposed, when the parameter r takes the
value of 4, gives approximately the same behavior as the
one obtained based on the Gaussian beam decomposition
for a local media. This approach can be used to describe
z-scan curves of thick samples that present a nonlocal
nonlinear response where the physical origin of this
behavior is unknown.
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