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Holographic generation of a class of nondiffracting fields
with optimum efficiency
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We discuss the accurate generation of complex optical fields using phase holograms that provide the optimum dif-
fraction efficiency. In each considered case, the phase modulation of the employed hologram is identical to the
phase of the desired optical field. We show that periodic and quasiperiodic nondiffracting optical fields, mathe-
matically obtained through the superposition of multiple plane waves, can be generated with high fidelity using this

approach. © 2012 Optical Society of America
OCIS codes: 090.1760, 100.5090, 050.5298, 070.6110.

Generating an arbitrary optical field is an important task
in physical optics. To achieve it, independent modulation
of both the amplitude and the phase of the field are re-
quired. A convenient method to perform this task is pro-
vided by synthetic holography. Both the efficiency and
the accuracy of synthetic holograms, however, depend
on the hologram type and the field to be generated. Dif-
ferent types of synthetic holograms, for generation of
arbitrary complex fields, are based on amplitude only
modulation [1], real valued modulation [2], and phase-
only modulation [3-9]. In the generation of a complex
field it is possible to employ a synthetic phase hologram
(SPH), whose phase modulation is identical to the phase
of that field [10]. The performance of this hologram,
which is referred to as kinoform of the complex field,
is highly dependent on the nature of the optical field
to be generated. We show that the periodic or quasiper-
iodic complex optical fields, equivalent to the superposi-
tion of multiple plane waves with symmetrically arranged
propagation vectors, can be generated with high fidelity
and the optimum efficiency using their kinoforms.

Let us denote the complex optical field to be generated
as f(x,y) = |f(x,y)| explié(x,y)], where |f(x,y)| and
&(x,y) are the modulus and the phase, respectively. An
optical element with complex transmittance f(x,vy),
which is illuminated by a plane wave, generates the com-
plex field f(x, y) with efficiency

n = Ag' / [) |f (2, y)Pdxdy, ey

where A is the area of the pupil, (), that limits the com-
plex transmittance.

The transmittance of the SPH employed to gen-
erate the complex field is expressed as h(x,y) =
expliy(x, y)]. If the desired complex field f(x, y) is gen-
erated on-axis, it can be related to the SPH by the identity

)

where f is a real positive constant, referred to as ampli-
tude gain of the SPH, and e(x, ) is the modulation error
[7]. Multiplying Eq. (2) by f*(x,y), and integrating
both sides of the resulting identity over the transmittance
support, we obtain

h(x.y) = ff (x.y) + e(x.y).
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An interesting situation occurs when the Fourier spectra
of the functions e(x, y) and f(x, y) have null overlapping.
The Fourier spectra of functions e(x,y) and f(x,y) are
denoted as FE(u,v) and F(u,v), respectively, being
(u,v) the spatial frequency coordinates, and the null
overlapping of F(u,v) and F(u,v) is represented by
the identity E'(u, v)F (u,v) = 0. For further reference, this
situation that allows the generation of the complex field
f(x,y), by applying a binary spatial filter to the Fourier
spectrum of the hologram, is referred to as filtering con-
dition. The second term at the right side of Eq. (3), which
corresponds to the correlation between e(x,y) and
f(x,y), evaluated at the origin, is null when the filtering
condition is fulfilled. In this case, the SPH amplitude gain
can be expressed as follows:

p = Azl / A 1 (@) explily (x.9) - @, )]} dady.
@

It is clear from Eq. (4) that the maximum possible am-
plitude gain is obtained when there is no difference
between the SPH phase, y(x,y), and the phase of the
desired field, &(x,y). Therefore, the upper bound for
the amplitude gain is given by

[ 1f (2, ) Pdady

PL ®)

This limit amplitude gain f;, previously was derived by
Wyrowski [11] with a different approach. The above dis-
cussion presents new and concise arguments to prove
the result in Eq. (5), enhancing its meaning and relevance
in the context of synthetic-phase holography. The field
f(x,y) can be recovered with the maximum amplitude
gain, by performing spatial filtering on the Fourier
spectrum of its kinoform, when this hologram fulfills
the filtering condition. In this case, the efficiency also
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gets its optimum value, which is obtained, considering
Egs. (1) and (2), as n;, = 2. In the context of the above
derivation, f(x,y) corresponds to a complex transmit-
tance, which is subject to the restriction |f(x,y)| < 1.
Therefore, the optimum amplitude gain f;, is larger than
or equal to 1, and the kinoform efficiency limit n;, = %1,
is larger than or equal to the efficiency (,) of the com-
plex element with transmittance f(x, y).

Next, we discuss a set of complex fields whose kino-
forms fulfill the filtering condition. These fields are the
periodic or quasiperiodic nondiffracting beams that
result from the sum of multiple plane waves, subject
to certain restrictions. The propagation vectors of the in-
terfering waves have a common projection on the z axis,
and the transverse projections of these vectors have azi-
muth angles uniformly distributed over the x-y plane. We
assume that the nth plane wave has a phase shift
0, = npAd, where A9 = 27/Q, Q is the number of inter-
fering waves and p is an integer number. The superposi-
tion of these @ waves at the plane z = 0 is given by

Q-1
w(r,0) =C Z exp(i0,,) exp[i2zpor cos(0 - nAb)], (6)
n=0

where 7 and 6 are the cylindrical coordinates and 2zp, is
the modulus of the transverse components of the propa-
gation vectors. The normalization constant C makes the
maximum of |w(r, 8)| equal to 1. As a simple illustrative
example, we consider the sum of two plane waves
(@ = 2) assuming p = 0. In this case, the field at the
plane 2z = 0 can be described, employing rectangular co-
ordinates, by f(x) = cos(2zpyx). The kinoform of this
function can be expressed by the Fourier series

oo

W) =Y ¢,f (ma), @)

m=1

with coefficients ¢,, = 4/(mn), for odd m, and c,, = 0,
otherwise. Considering the form of function f(x), it is
easy to verify that its Fourier spectrum, formed by
2 Dirac deltas, is isolated from the Fourier spectra of
the other terms in Eq. (7). Therefore, the kinoform of
the complex field f(x) fulfills the filtering condition.
Moreover, the field f(x) is generated from the kinoform
with amplitude gain f = ¢; = 4/z. It is straightforward to
show, employing Eq. (5), that the maximum amplitude
gain attainable when this field is codified with a SPH
is, as expected, 4/x.

A more interesting example is the field obtained when
the number of waves @ tends to infinity. In this case, the
field in Eq. (6) corresponds to a nondiffracting Bessel
beam J,(27p,r) exp(ipd), where J,, denotes the pth-order
Bessel function of the first kind. It was proved in Arrizén
et al. [9] that the kinoform of such a field fulfills the
filtering condition.

To prove analytically the validity of the filtering condi-
tion in general, we first consider the periodicity of the
exponential functions in Eq. (6), to establish the identity
w(r, 0 + n(2x/Q)] = explinp(2x/Q)w(r, 8), for any inte-
ger number n. Using this result and the definition of the
kinoform transmittance k(r,6) = exp[i&(r, 0)], we also
prove the relation
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kir.0 +n(2r/Q)] = explinpCr/Q)lk(r.0).  (8)

Let us express the kinoform Fourier transform as K (p, ¢),
where p and ¢ are the radial and angular polar coordi-
nates, respectively, in the Fourier domain. Using the
expression for the Fourier transform in polar coordinates
and a variable change, it is shown that the kinoform
Fourier spectrum also obeys the property in Eq. (8), i.e.,

K[p.¢ + n2x/Q)] = explinp(2z/Q)K(p.$). ()

for an arbitrary integer number n. We can define the sig-
nal domain as the set of points (p, ¢) where the Fourier
spectrum of the field w(r, 8), denoted as W(p, ), is not
null. It can be stated that the filtering condition is fulfilled
if the Fourier spectrum of K(p,¢) within the signal
domain is proportional to W(p, ). Assuming that the
field w(r, 0) is infinitely extended, its Fourier spectrum,
W(p, @), will be formed by @ infinitely small spots, placed
at the points of the circle of radius p,, with angular co-
ordinates q(27z/Q), for ¢ = 0 to @ — 1. The amplitudes of
these spots have a common value and the gth spot is
modulated by a phase shift exp[igp(27/Q)]. Considering
Eq. (9), it is obtained that the signal domain points
[P0, 92x/Q)], for ¢ = 0 to @ - 1, in the kinoform Fourier
spectrum have identical amplitudes among them and a
phase distribution equal to that of the spots in the Fourier
spectrum W (p, ¢). Therefore, the kinoform of w(r, 8) ful-
fills the filtering condition. This proof assumes that the
signal spots are infinitely small, which is only possible
for infinitely extended functions w(r, #) and k(r, d). We
computed efficiencies 7, and #;, versus @ for different
values of p. In particular, the results for p = 0 (depicted
in Fig. 1) clearly fulfill the relation #;, > #,. Similar results
are obtained for p > 0.

By means of numerical simulations it can be proved
that the kinoforms with finite support fulfill the filtering
condition with quite good approximation. To illustrate
this fact, let us consider a couple of examples. For the
first one, the field w(r, ) is numerically computed for a
number of waves @ = 8 and p = 0, assuming that the
field is limited by a circular support of radius
R = 7.5,051. Figure 2 shows the modulus and phase of
the Fourier spectra of both the field w(r, 8) and its kino-
form, computed in this case. Similar results, computed
for the field w(r, §) with parameters @ =5 and p = 1,
maintaining the same support, are depicted in Fig. 3.
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Fig. 1. Efficiencies 7, and #; versus the number @ of

interfering waves for p = 0.
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Fig. 2. (a) Modulus and (b) phase of the numerically com-
puted Fourier spectrum of the field w(r, ) with parameters
for @ = 8 and p = 0. Similar results for the corresponding kino-
form Fourier spectrum are shown in (c) and (d), respectively.

It is noted in each example that the kinoform Fourier
spectrum shows a section (signal region) whose complex
amplitude is quite similar to the Fourier spectrum of the
field w(r, 8). Because the maximum amplitudes in the
kinoforms spectra appear at the signal regions, the peak
values in the gray level bars of Figs. 2(c) and 3(c), cor-
respond to the amplitude gains, which are very approxi-
mated to the upper-bound limits obtained with Eq. (5). A
consequence of the finite size of the kinoform SPH is that
its Fourier spectrum is formed by extended spots, whose
structure corresponds to the Fourier transform of the ki-
noform pupil (see the examples in Figs. 2 and 3). If the
kinoform pupil is circular, the convenient spatial filter
must be formed by finite-size circles, equal to the pupil’s
Airy disk. In this case, it is expected that the practical
efficiency will roughly coincide with the ideal efficiency
limit computed by the relation n;, = fZn,. In general, if
the size of the filter circles is further increased, unwanted
energy will be transmitted through the filter, leading to an
increase in the reconstructed signal error. A detailed dis-
cussion about this issue is out of the scope of the work
presented herein.

In the context of conventional synthetic holography
[1-8] the relation in Eq. (2), between the hologram k(x, y)
and the encoded complex field f(x,y), is fulfilled with
amplitude gains smaller than or equal to 1. The main re-
sult discussed establishes that any periodic or quasiper-
iodic nondiffracting field (PQNDF), which results from
the superposition of an arbitrary number of plane waves,
whose propagation vectors are symmetrically arranged
around the optical axis, can be generated from its kino-
form with the maximum possible amplitude gain, which
is larger than 1. This is a new and significant result, in the
context of synthetic phase holography, not only from a
theoretical point of view but also because of its practical
consequences. The generation of arbitrary complex
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Fig. 3. (a) Modulus and (b) phase of the numerically com-
puted Fourier spectrum of the field w(r, ) with parameters
for @ = 5 and p = 1. Similar results for the corresponding kino-
form Fourier spectrum are shown in (c) and (d), respectively.

fields with phase holograms has recently become com-
mon practice because of the wide availability of phase-
only spatial light modulators. In particular, the possibility
of generating a PQNDF with phase holograms that pro-
vide the maximum possible gain (and consequently the
optimum efficiency) will affect several applications of
such optical fields, e.g., fabrication of photonic crystals
and quasicrystals, implementation of nonlinear optical
guides, and particle manipulation with light. The kino-
form hologram has been employed in other cases, i.e.,
in generation of Mathiew-Gauss beams [12]. For this
and other cases that are different to the ones discussed
here, it is still required to show whether the filtering
condition is fulfilled, at least approximately.
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